Lời giải
Đặt \(\sqrt {{x^2} + 5x + 28} = t{\rm{ }}\left( {t > 0} \right)\)
⇒ x2 + 5x = t2 – 28
Phương trình trở thành: t2 – 28 + 4 – 5t = 0
⇔ t2 – 5t – 24 = 0 \( \Leftrightarrow \left[ \begin{array}{l}t = 8\,\,\,\left( {tm} \right)\\t = - 3\left( {ktm} \right)\end{array} \right.\)
Với t = 8 ta có \[\sqrt {{x^2} + 5x + 28} = 8\]
⇔ x2 + 5x + 28 = 64
⇔ x2 + 5x – 36 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 4\\x = - 9\end{array} \right.\)
Vậy \(x \in \left\{ {4; - 9} \right\}\).
Cho đường tròn (O), đường kính AB cố định, M là 1 điểm thuộc (O), (M khác A và B). Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh rằng:
a) 3 điểm O, M, D thẳng hàng.
b) Tam giác COD là tam giác cân.
c) Gọi N là giao điểm của OC và (I). Chứng minh khi M thay đổi thì đường thẳng qua N vuông góc với AB luôn đi qua điểm cố định.
Cho tam giác ABC nhọn. Gọi M và N lần lượt là trung điểm của AB, BC.
a) Tính độ dài của MN biết AC = 16cm.
b) Gọi I là trung điểm của AC. Chứng minh tứ giác BMIN là hình bình hành.
c) Trên tia đối của tia NM lấy E sao cho N là trung điểm ME. Gọi K là giao điểm của EI và MC. Chứng minh MC = 3KC.
Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:
a, 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.
b, 3 điểm M, N, H thẳng hàng.
c, HA . HF = R2 – OH2.
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:
a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);
b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).