Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh:
a) OM song song O'N;
b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO' lớn nhất.
Lời giải
Xét ∆MAN vuông tại A có: \(\widehat {AMN} + \widehat {ANM} = 90^\circ \) (1)
Và \[\widehat {MAO} + \widehat {NAO'} = 90^\circ = 180^\circ - \widehat {MAO} = 180^\circ - 90^\circ = 90^\circ \] (2)
Lại có: ∆OMA cân tại O (OA = OM = R) ⟹ \[\widehat {OAM} = \widehat {OMA}\] (3)
∆O’NA cân tại O (O’A = O’N = R’) ⟹ \[\widehat {O'AN} = \widehat {O'NA}\](4)
Từ (1), (2), (3) và (4) suy ra:
\[\widehat {OMN} + \widehat {MNO'} = \left( {\widehat {OMA} + \widehat {AMN}} \right) + \left( {\widehat {ANM} + \widehat {O'NA}} \right)\]
\[ = \widehat {OMA} + \widehat {AMN} + \widehat {ANM} + \widehat {O'NA}\]
\[ = \widehat {OAM} + \widehat {AMN} + \widehat {ANM} + \widehat {O'AN}\]
\[ = \left( {\widehat {OAM} + \widehat {O'AN}} \right) + \left( {\widehat {AMN} + \widehat {ANM}} \right)\]
\[ = 90^\circ + 90^\circ \]
\[ = 180^\circ \]
Tứ giác OMNO’ có \[\widehat {OMN} + \widehat {MNO'} = 180^\circ \] nên MN // O’N.
b) Từ O’ kẻ O’H ⊥ OM. Khi đó:
\({S_{OMNO'}} = \frac{{\left( {O'N + OM} \right).O'H}}{2} = \frac{{\left( {R' + R} \right).O'H}}{2} \le \frac{{\left( {R' + R} \right).O'O}}{2} = \frac{{{{\left( {R' + R} \right)}^2}}}{2}\)
Dấu bằng xảy ra khi và chỉ khi O’H = O’O hay H ≡ O
⇒ O’O ⊥ MO hoặc O’O ⊥ O’N
Vậy tứ giác MNO’O có diện tích lớn nhất là \(\frac{{{{\left( {R' + R} \right)}^2}}}{2}\) khi O’O ⊥ MO hoặc O’O ⊥ O’N.
Cho đường tròn (O), đường kính AB cố định, M là 1 điểm thuộc (O), (M khác A và B). Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh rằng:
a) 3 điểm O, M, D thẳng hàng.
b) Tam giác COD là tam giác cân.
c) Gọi N là giao điểm của OC và (I). Chứng minh khi M thay đổi thì đường thẳng qua N vuông góc với AB luôn đi qua điểm cố định.
Cho tam giác ABC nhọn. Gọi M và N lần lượt là trung điểm của AB, BC.
a) Tính độ dài của MN biết AC = 16cm.
b) Gọi I là trung điểm của AC. Chứng minh tứ giác BMIN là hình bình hành.
c) Trên tia đối của tia NM lấy E sao cho N là trung điểm ME. Gọi K là giao điểm của EI và MC. Chứng minh MC = 3KC.
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:
a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);
b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).
Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:
a, 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.
b, 3 điểm M, N, H thẳng hàng.
c, HA . HF = R2 – OH2.