Lời giải
Ta có \(\overrightarrow {AB} + \overrightarrow {MA} = \overrightarrow {MC} + \overrightarrow {BM} \).
\( \Leftrightarrow \overrightarrow {MB} = \overrightarrow {BC} \).
\( \Leftrightarrow \overrightarrow {BM} + \overrightarrow {BC} = \vec 0\).
Suy ra B là trung điểm của MC.
Vậy M là điểm đối xứng với điểm C qua điểm B.
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC.
a) Chứng minh rằng BE = CD.
b) Chứng minh BE // CD.
c) Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh AM = AN.
a) Viết phương trình đường thẳng biết đồ thị của nó cắt trục tung tại điểm có tung độ bằng 4 và cắt trục hoành tại điểm có hoành độ bằng –3.
b) Viết phương trình đường thẳng (d) biết (d) có hệ số góc là –2 và đi qua điểm A(–1; 5).
Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x) = |f(x) – m + 2018| có 7 điểm cực trị?
Cho hàm số y = (m – 1)x + m (1) (với m là tham số, m ≠ 0).
a) Tìm m để đồ thị hàm số (1) đi qua điểm M(1; 3).
b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 4. Vẽ đồ thị hàm số với m tìm được.