Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\(\frac{1}{{a + b - c}} + \frac{1}{{b + c - a}} + \frac{1}{{c + a - b}} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\).
Lời giải
Do a, b, c là độ dài 3 cạnh của một tam giác nên \(\left\{ \begin{array}{l}a + b - c > 0\\b + c - a > 0\\c + a - b > 0\end{array} \right.\).
Áp dụng bất đẳng thức Cauchy, ta được:
⦁ \(\frac{1}{{a + b - c}} + \frac{1}{{b + c - a}} \ge \frac{4}{{2b}} = \frac{2}{b}\);
⦁ \(\frac{1}{{a + b - c}} + \frac{1}{{c + a - b}} \ge \frac{4}{{2a}} = \frac{2}{a}\);
⦁ \(\frac{1}{{b + c - a}} + \frac{1}{{c + a - b}} \ge \frac{4}{{2c}} = \frac{2}{c}\).
Cộng vế theo vế ba bất đẳng thức trên, ta được:
\(2.\left( {\frac{1}{{a + b - c}} + \frac{1}{{b + c - a}} + \frac{1}{{c + a - b}}} \right) \ge \frac{2}{a} + \frac{2}{b} + \frac{2}{c} = 2.\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right)\).
\( \Leftrightarrow \frac{1}{{a + b - c}} + \frac{1}{{b + c - a}} + \frac{1}{{c + a - b}} \ge \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\).
Dấu “=” xảy ra ⇔ a = b = c.
Vậy ta có điều phải chứng minh.
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC.
a) Chứng minh rằng BE = CD.
b) Chứng minh BE // CD.
c) Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh AM = AN.
a) Viết phương trình đường thẳng biết đồ thị của nó cắt trục tung tại điểm có tung độ bằng 4 và cắt trục hoành tại điểm có hoành độ bằng –3.
b) Viết phương trình đường thẳng (d) biết (d) có hệ số góc là –2 và đi qua điểm A(–1; 5).
Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số g(x) = |f(x) – m + 2018| có 7 điểm cực trị?
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC = BD.
a) Chứng minh AD = BC.
b) Gọi E là giao điểm của AD và BC. Chứng minh ∆EAC = ∆EBD.
c) Chứng minh OE là phân giác của \(\widehat {xOy}\).
Cho hàm số y = (m – 1)x + m (1) (với m là tham số, m ≠ 0).
a) Tìm m để đồ thị hàm số (1) đi qua điểm M(1; 3).
b) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 4. Vẽ đồ thị hàm số với m tìm được.