Lời giải
Ta có: \[\frac{A}{2} + \frac{B}{2} = \frac{\pi }{2} - \frac{C}{2}\]
\( \Rightarrow \tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right)\)
\( \Leftrightarrow \frac{{\tan \frac{A}{2} + \tan \frac{B}{2}}}{{1 - \tan \frac{A}{2}\tan \frac{B}{2}}} = \cot g\frac{C}{2}\)
\( \Leftrightarrow \left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)\tan \frac{C}{2} = 1 - \tan \frac{A}{2}\tan \frac{B}{2}\)
\[ \Leftrightarrow \tan \frac{A}{2}\tan \frac{C}{2} + \tan \frac{B}{2}\tan \frac{C}{2} = 1 - \tan \frac{A}{2}\tan \frac{B}{2}\]
\( \Leftrightarrow \tan \frac{A}{2}\tan \frac{B}{2} + \tan \frac{B}{2}\tan \frac{C}{2} + \tan \frac{C}{2}\tan \frac{A}{2} = 1\)
Áp dụng BĐT (a + b + c)2 ³ 3(ab + bc + ca) đối với \(\tan \frac{A}{2},\;\tan \frac{B}{2},\;\tan \frac{C}{2}\), ta được:
\({\left( {\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2}} \right)^2} \ge 3\left( {\tan \frac{A}{2}\tan \frac{B}{2} + \tan \frac{B}{2}\tan \frac{C}{2} + \tan \frac{C}{2}\tan \frac{A}{2}} \right) = 3\)
\[ \Rightarrow \tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \ge \sqrt 3 \]
Mà theo đề ra ta có \(\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} = \sqrt 3 \) nên dấu bằng xảy ra khi \(\tan \frac{A}{2} = \tan \frac{B}{2} = \tan \frac{C}{2} = \frac{{\sqrt 3 }}{3} \Rightarrow A = B = C = \frac{\pi }{3}\).
Vậy tam giác ABC đều.
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Phân tích đa thức sau thành nhân tử:
a) 4x2 + y2 − 4xy
b) 27 + 9x2 + 27x + x3
c) 8z3 + 1
d) (2z − 3)2 − 16
e) (2x − 7)2 − (x + 2)2
Tìm số nguyên dương n sao cho:
\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)
= 10102 . 20212 log 2018 2019
Phân tích các đa thức sau thành nhân tử
a) 4x2 − 4xy + y2
b) 9x3 − 9x2y − 4x + 4y
c) x3 + 2 + 3(x3 − 2)