Trong mặt phẳng tọa độ Oxy cho đường thẳng d: x – 2y + 3 = 0 và I(1; –2). Viết phương trình đường thẳng d' sao cho d’ là ảnh của đường thẳng d qua phép đối xứng tâm I.
Lấy M(–3; 0) thuộc d, khi đó M’ = ĐI(M) là điểm thuộc d’.
Ta có M’ = ĐI(M) nên I(1; –2) là trung điểm của MM’
d’ là ảnh của d qua phép đối xứng tâm I nên d’ // d và d’ đi qua M’(5; –4)
⇒ (d’): x – 2y – 13 = 0.
Hình nón có thiết diện qua trục là tam giác đều và có thể tích . Diện tích xung quanh S của hình nón đó là:
Cho đoạn thẳng AB và M là một điểm nằm trên đoạn AB sao cho AM = AB. Giá trị của k để có đẳng thức là:
Cho hình hộp ABCD.A’B’C’D’. Gọi M là điểm trên cạnh AC sao cho AC = 3MC. Lấy N trên cạnh C’D sao cho C’N = xC’D. Với giá trị nào của x thì MN // BD’.
Một hình hộp chữ nhật ABCD.A’B’C’D’ có ba kích thước là 2 cm, 3 cm và 6 cm. Thể tích của khối tứ diện ACB’D’ bằng:
Cho tam giác ABC đều cạnh a. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng?
Cho tứ diện ABCD có I, J lần lượt là trung điểm AC, BC. Gọi K thuộc BD sao cho KD < KB. Gọi E là giao điểm của JK và CD, F là giao điểm của AD và IE. Giao tuyến của (IJK) và (ACD) là:
Tìm m nguyên để hệ phương trình sau có nghiệm duy nhất là nghiệm nguyên.
a)
Trong hệ trục tọa độ Oxy cho hình bình hành OABC, điểm C thuộc trục hoành. Khẳng định nào sau đây đúng?
Cho hình lăng trụ ABC.A'B'C' có thể tích là V. Gọi M là điểm thuộc cạnh CC' sao cho CM = 3C'M. Tính thể tích khối chóp M.ABC