Cho tập A = {0; 1; 2; 3; 4; 5; 6}. Gọi X là tập các số tự nhiên có 5 chữ số khác nhau được lập từ A. Chọn một số từ X, tính xác suất sao cho số được chọn có đúng 3 chữ số chẵn.
Có \[6.A_6^4 = 2160\] số tự nhiên có 5 chữ số khác nhau lập từ A
Þ n(X) = 2160
Chọn một số từ X, số phần tử của không gian mẫu là n(W) = 2160
Gọi B là biến cố “chọn được số có đúng 3 chữ số chẵn”
Xét: \[\overline {abcde} \] là số tự nhiên có 5 chữ số khác nhau trong đó có đúng 3 chữ số chẵn
• Trường hợp 1: Xét bộ có 5 số trong đó có 3 chữ số chẵn có mặt số 0 và 2 số lẻ. Có tất cả \[C_3^2.C_3^2\] bộ.
Ứng với mỗi bộ có 4.4! (số)
Suy ra có: \[C_3^2.C_3^2.4!.4! = 864\] (số)
• Trường hợp 2: Xét bộ có 5 số trong đó có 3 chữ số chẵn không có số 0 và 2 chữ số lẻ. Có tất cả\[C_3^2\] bộ.
Ứng với mỗi bộ trên có 5! số
Suy ra có: \[C_3^2.5! = 360\] (số)
Do đó số phần tử của biến cố B là n(B) = 1224
Xác suất \[\Delta = {m^2} - 4.1.( - 2) = {m^2} + 8 > 0\,\,\,(\forall m)\].
Vậy xác suất sao cho số được chọn có đúng 3 chữ số chẵn là \[\frac{{281}}{{540}}\].
Cho hình chữ nhật ABCD (AB > BC). Từ B kẻ BH vuông góc với AC tại H. Lấy E sao cho H là trung điểm BE, lấy Q đối xứng với C qua H. QE cắt DC tại M. Gọi N là hình chiếu của E trên AD, MN cắt DE tại O. Chứng minh tam giác OEM là tam giác cân.
Hỏi có bao nhiêu giá trị m nguyên trong [−2017;2017] để phương trình:
log(mx) = 2log(x + 1) có nghiệm duy nhất?
Cho hình nón (N) có bán kính đáy bằng 4, diện tích xung quanh bằng 20π. Tính thể tích khối nón đã cho.
Cho hàm số f(x) thỏa mãn \[f\left( 2 \right) = - \frac{2}{9}\]và f ′(x) = 2x[f(x)]2 với mọi \[x \in \mathbb{R}\]. Tính giá trị của f(1).
Một trong các bạn A, B, C và D làm vỡ kính cửa sổ. Khi được hỏi, họ trả lời như sau:
A: “C làm vỡ”.
B: “Không phải tôi”.
C: “D làm vỡ”.
D: “C đã nói dối”.
Nếu có đúng một người nói thật thì ai đã làm vỡ cửa số.
Tìm m để phương trình: x2 + mx – 2 = 0 có 2 nghiệm phân biệt x1, x2 cùng nhỏ hơn 1.
Tích tất cả các nghiệm của phương trình \[\log _3^2x - 2{\log _3}x - 7 = 0\] là?
Chứng minh định lí: “Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông”.
Cho tam giác ABC, có bao nhiêu điểm M thỏa mãn: \[\left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| = 3?\]
Có bao giá trị nguyên của tham số m để phương trình:
4x – m.2x + 1 + 2m2 – 5 = 0 có hai nghiệm phân biệt?
Tổng tất cả các giá trị nguyên của tham số m để đồ thị hàm số:
y = ∣3x4 + 8x3 − 6x2 − 24x − m∣ có 7 điểm cực trị.
Cho hình chóp tam giác đều S.ABC có các cạnh bên SA, SB, SC vuông góc với nhau từng đôi một. Biết thể tích của khối chóp bằng \[\frac{{{a^3}}}{6}\]. Tính bán kính r của mặt cầu nội tiếp của hình chóp S.ABC.
Cho x, y thỏa mãn x – 2y + 2 = 0. Tìm giá trị nhỏ nhất của biểu thức:
\[T = \sqrt {{{(x - 3)}^2} + {{(y - 5)}^2}} + \sqrt {{{(x - 5)}^2} + {{(y - 7)}^2}} \].