Cho a, b là hai số thực dương tùy ý và b ≠ 1. Tìm kết luận đúng.
A. ln a + ln b = ln(a + b)
B. ln(a + b) = ln a . ln b
C. ln a – ln b = ln(a – b)
D. \({\log _b}a = \frac{{\ln a}}{{\ln b}}\).
Đáp án đúng là: D
Ta có:
ln a + ln b = ln (ab) ≠ ln(a + b) nên A sai
ln(a + b) ≠ ln a . ln b nên B sai
\(\ln a - \ln b = \ln \frac{a}{b} \ne \ln \left( {a - b} \right)\) nên C sai
\({\log _b}a = \frac{{\ln a}}{{\ln b}}\) nên D đúng
Vậy ta chọn đáp án D.
Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?
Xếp 6 người A, B, C, D, E, F vào một ghế dài. Hỏi có bao nhiêu cách sắp xếp sao cho A và F không ngồi cạnh nhau.
Cho x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị lớn nhất của: \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}.\)
Tìm số nguyên a, b biết \(\frac{a}{7} - \frac{1}{2} = \frac{1}{{b + 3}}\).
Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình \(\log _2^2x + 4{\log _2}x - m = 0\) có nghiệm thuộc khoảng (0; 1).
Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối là đỉnh của lục giác.
Cho phương trình \({2^{{{\left( {x - 1} \right)}^2}}}.{\log _2}\left( {{x^2} - 2{\rm{x}} + 3} \right) = {4^{\left| {x - m} \right|}}{\log _2}\left( {2\left| {x - m} \right| + 2} \right)\) với m là tham số thực. Có bao nhiêu giá trị nguyên của m trên đoạn [–2019; 2019] để phương trình có đúng 2 nghiệm phân biệt.
Tìm tập hợp các giá trị của tham số thực m để phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1).
Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = x3 – 3(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞). Số phần tử của S bằng
Chứng minh đẳng thức sau: (x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x).
Giải hệ phương trình: \(\left\{ \begin{array}{l}2{\rm{x}} + y = \frac{3}{{{x^2}}}\\2y + x = \frac{3}{{{y^2}}}\end{array} \right.\).