IMG-LOGO

Câu hỏi:

16/07/2024 76

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (–1; 2; 4) và B (0; 1; 5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?


A. \[{\rm{d}} = - \frac{{\sqrt 3 }}{3}\]



B. \[{\rm{d}} = \sqrt 3 \]



C. \[{\rm{d}} = \frac{1}{3}\]



D. \[{\rm{d}} = \frac{1}{{\sqrt 3 }}\].


Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (-1; 2; 4) và B (0; 1; 5). Gọi (ảnh 1)

Ta có \(\overrightarrow {AB} = \left( {1; - 1;1} \right) \Rightarrow \left| {\overrightarrow {AB} } \right| = \sqrt 3 \)

Gọi H là hình chiếu của B trên mặt phẳng (P) 

Khi đó ta có BH là khoảng cách từ điểm B đến mặt phẳng (P) 

Ta luôn có BH ≤ AB do đó khoảng cách từ B đến mặt phẳng (P) lớn nhất khi H ≡ A 

Khi đó \(\overrightarrow {AB} = \left( {1; - 1;1} \right)\) là véc tơ pháp tuyến của mặt phẳng (P)

Suy ra phương trình mặt phẳng (P) đi qua A (–1; 2; 4) và có véc tơ pháp tuyến \(\overrightarrow {AB} = \left( {1; - 1;1} \right)\) là x – y + z – 1 = 0

Do đó khoảng cách từ điểm O đến mặt phẳng (P) là:

\(d\left( {O,\left( P \right)} \right) = \frac{{\left| { - 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{1}{{\sqrt 3 }}\)

Vậy ta chọn đáp án D.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm x, biết: x3 – 16x = 0.

Xem đáp án » 17/08/2023 460

Câu 2:

Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?

Xem đáp án » 17/08/2023 270

Câu 3:

Xếp 6 người A, B, C, D, E, F vào một ghế dài. Hỏi có bao nhiêu cách sắp xếp sao cho A và F không ngồi cạnh nhau.

Xem đáp án » 17/08/2023 113

Câu 4:

Tìm số nguyên a, b biết \(\frac{a}{7} - \frac{1}{2} = \frac{1}{{b + 3}}\).

Xem đáp án » 17/08/2023 111

Câu 5:

Cho x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị lớn nhất của: \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}.\)

Xem đáp án » 17/08/2023 111

Câu 6:

Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).

Xem đáp án » 17/08/2023 108

Câu 7:

Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình \(\log _2^2x + 4{\log _2}x - m = 0\) có nghiệm thuộc khoảng (0; 1).

Xem đáp án » 17/08/2023 103

Câu 8:

Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối là đỉnh của lục giác.

Xem đáp án » 17/08/2023 97

Câu 9:

Chọn đáp án đúng. Căn bậc hai số học của số a không âm là:

Xem đáp án » 17/08/2023 97

Câu 10:

Tìm tập hợp các giá trị của tham số thực m để phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1).

Xem đáp án » 17/08/2023 97

Câu 11:

Cho phương trình \({2^{{{\left( {x - 1} \right)}^2}}}.{\log _2}\left( {{x^2} - 2{\rm{x}} + 3} \right) = {4^{\left| {x - m} \right|}}{\log _2}\left( {2\left| {x - m} \right| + 2} \right)\) với m là tham số thực. Có bao nhiêu giá trị nguyên của m trên đoạn [–2019; 2019] để phương trình có đúng 2 nghiệm phân biệt.

Xem đáp án » 17/08/2023 97

Câu 13:

Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = x3 – 3(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞). Số phần tử của S bằng

Xem đáp án » 17/08/2023 92

Câu 14:

Giải phương trình: \(\left( {x + 1} \right)\left( {x + 4} \right) - 3\sqrt {{x^2} + 5{\rm{x}} + 2} = 6\).

Xem đáp án » 17/08/2023 88

Câu 15:

Cho a, b là hai số thực dương tùy ý và b ≠ 1. Tìm kết luận đúng.

Xem đáp án » 17/08/2023 88

Câu hỏi mới nhất

Xem thêm »
Xem thêm »