Tìm điều kiện xác định của \(\sqrt {8{\rm{x}} - {x^2} - 15} \).
Điều kiện xác định của \(\sqrt {8{\rm{x}} - {x^2} - 15} \) là 8x – x2 – 15 ≥ 0
⇔ x2 – 8x + 15 ≤ 0
⇔ x2 – 8x + 16 – 1 ≤ 0
⇔ (x – 4)2 – 1 ≤ 0
⇔ (x – 4 – 1)(x – 4 + 1) ≤ 0
⇔ (x – 5)(x – 3) ≤ 0
\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x - 3 \le 0\\x - 5 \ge 0\end{array} \right.\\\left\{ \begin{array}{l}x - 3 \ge 0\\x - 5 \le 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \le 3\\x \ge 5\end{array} \right.\\\left\{ \begin{array}{l}x \ge 3\\x \le 5\end{array} \right.\end{array} \right. \Leftrightarrow 3 \le x \le 5\)
Vậy \(\sqrt {8{\rm{x}} - {x^2} - 15} \) xác định khi 3 ≤ x ≤ 5.
Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?
Xếp 6 người A, B, C, D, E, F vào một ghế dài. Hỏi có bao nhiêu cách sắp xếp sao cho A và F không ngồi cạnh nhau.
Tìm số nguyên a, b biết \(\frac{a}{7} - \frac{1}{2} = \frac{1}{{b + 3}}\).
Cho x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị lớn nhất của: \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}.\)
Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).
Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình \(\log _2^2x + 4{\log _2}x - m = 0\) có nghiệm thuộc khoảng (0; 1).
Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối là đỉnh của lục giác.
Tìm tập hợp các giá trị của tham số thực m để phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1).
Cho phương trình \({2^{{{\left( {x - 1} \right)}^2}}}.{\log _2}\left( {{x^2} - 2{\rm{x}} + 3} \right) = {4^{\left| {x - m} \right|}}{\log _2}\left( {2\left| {x - m} \right| + 2} \right)\) với m là tham số thực. Có bao nhiêu giá trị nguyên của m trên đoạn [–2019; 2019] để phương trình có đúng 2 nghiệm phân biệt.
Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = x3 – 3(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞). Số phần tử của S bằng
Giải phương trình: \(\left( {x + 1} \right)\left( {x + 4} \right) - 3\sqrt {{x^2} + 5{\rm{x}} + 2} = 6\).