IMG-LOGO

Câu hỏi:

16/07/2024 71

Định m để bất phương trình (1 – m)x2 + 2mx + m − 6 ≥ 0  có nghiệm là một đoạn trên trục số có độ dài bằng 1.

Trả lời:

verified Giải bởi Vietjack

Để bất phương trình có nghiệm trên 1 đoạn thì f(x) = (1 – m)x2 + 2mx + m – 6 phải là tam thức bậc hai có hai nghiệm phân biệt x1; x2 và hệ số a = 1 – m < 0

\( \Leftrightarrow \left\{ \begin{array}{l}m > 1\\\Delta > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\{m^2} - \left( {1 - m} \right)\left( {m - 6} \right) > 0\end{array} \right.\)

\( \Leftrightarrow m \in \left( {1;\frac{3}{2}} \right) \cup \left( {2; + \infty } \right)\)

Để độ dài khoảng nghiệm bằng 1 thì |x1 – x2| = 1

(x1 – x2)2 = 1

(x1 + x2)2 – 4x1x2 = 1

Áp dụng định lí Vi – ét ta có

\({x_1} + {x_2} = \frac{{2m}}{{m - 1}};{x_1}{x_2} = \frac{{m - 6}}{{1 - m}}\)

Khi đó \({\left( {\frac{{2m}}{{m - 1}}} \right)^2} - 4.\frac{{m - 6}}{{1 - m}} = 1\)

\( \Leftrightarrow {\left( {\frac{{2m}}{{m - 1}}} \right)^2} + 4.\frac{{\left( {m - 6} \right)\left( {m - 1} \right)}}{{{{\left( {m - 1} \right)}^2}}} = \frac{{{{\left( {m - 1} \right)}^2}}}{{{{\left( {m - 1} \right)}^2}}}\)

4m2 + 4(m – 6)(m – 1) = (m – 1)2

4m2 + 4(m2 – 7m + 6) = m2 – 2m + 1

4m2 + 4m2 – 28m + 24 = m2 – 2m + 1

7m2 – 26m + 23 = 0

\( \Leftrightarrow m = \frac{{13 \pm 2\sqrt 2 }}{7}\)

Vậy \(m = \frac{{13 \pm 2\sqrt 2 }}{7}\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm x, biết: x3 – 16x = 0.

Xem đáp án » 17/08/2023 460

Câu 2:

Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?

Xem đáp án » 17/08/2023 270

Câu 3:

Xếp 6 người A, B, C, D, E, F vào một ghế dài. Hỏi có bao nhiêu cách sắp xếp sao cho A và F không ngồi cạnh nhau.

Xem đáp án » 17/08/2023 113

Câu 4:

Tìm số nguyên a, b biết \(\frac{a}{7} - \frac{1}{2} = \frac{1}{{b + 3}}\).

Xem đáp án » 17/08/2023 111

Câu 5:

Cho x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị lớn nhất của: \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}.\)

Xem đáp án » 17/08/2023 111

Câu 6:

Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).

Xem đáp án » 17/08/2023 108

Câu 7:

Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình \(\log _2^2x + 4{\log _2}x - m = 0\) có nghiệm thuộc khoảng (0; 1).

Xem đáp án » 17/08/2023 103

Câu 8:

Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối là đỉnh của lục giác.

Xem đáp án » 17/08/2023 97

Câu 9:

Chọn đáp án đúng. Căn bậc hai số học của số a không âm là:

Xem đáp án » 17/08/2023 97

Câu 10:

Tìm tập hợp các giá trị của tham số thực m để phương trình 6x + (3 – m) . 2x – m = 0 có nghiệm thuộc khoảng (0; 1).

Xem đáp án » 17/08/2023 97

Câu 11:

Cho phương trình \({2^{{{\left( {x - 1} \right)}^2}}}.{\log _2}\left( {{x^2} - 2{\rm{x}} + 3} \right) = {4^{\left| {x - m} \right|}}{\log _2}\left( {2\left| {x - m} \right| + 2} \right)\) với m là tham số thực. Có bao nhiêu giá trị nguyên của m trên đoạn [–2019; 2019] để phương trình có đúng 2 nghiệm phân biệt.

Xem đáp án » 17/08/2023 97

Câu 13:

Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = x3 – 3(2m + 1)x2 + (12m + 5)x + 2 đồng biến trên khoảng (2; +∞). Số phần tử của S bằng

Xem đáp án » 17/08/2023 92

Câu 14:

Giải phương trình: \(\left( {x + 1} \right)\left( {x + 4} \right) - 3\sqrt {{x^2} + 5{\rm{x}} + 2} = 6\).

Xem đáp án » 17/08/2023 88

Câu 15:

Cho a, b là hai số thực dương tùy ý và b ≠ 1. Tìm kết luận đúng.

Xem đáp án » 17/08/2023 88

Câu hỏi mới nhất

Xem thêm »
Xem thêm »