Lời giải
Đáp án đúng là: C
Ta có \[{\rm{T = }}{{\rm{x}}^{\rm{2}}}{\rm{ + 20x + 101}}\]
\[{\rm{ = }}\left( {{x^2} + 2.10x + 100} \right) + 1\]
\[ = {\left( {x + 10} \right)^2} + 1 \ge 1\].
Vì \[{\left( {x + 10} \right)^2} \ge 0,\forall x \in \mathbb{R}\] nên \[T = {\left( {x + 10} \right)^2} + 1 \ge 1\].
Cho hai biểu thức:
\(P = {\left( {4x + 1} \right)^3} - \left( {4x + 3} \right)\left( {16{x^2} + 3} \right)\);
\(Q = {\left( {x - 2} \right)^3} - x\left( {x + 1} \right)\left( {x - 1} \right) + 6x\left( {x - 3} \right) + 5x\).
Tìm mối quan hệ giữa hai biểu thức P, Q.