Lời giải
Đáp án đúng là: A
\[{a^3} + {b^3} + {c^3} - 3abc\]
\( = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) + {c^3} - 3abc\)
\( = {\left( {a + b} \right)^3} + {c^3} - 3ab\left( {a + b + c} \right)\)
\( = \left( {a + b + c} \right)\left[ {{{\left( {a + b} \right)}^2} - \left( {a + b} \right)c + {c^3}} \right] - 3ab\left( {a + b + c} \right)\)
\( = \left( {a + b + c} \right)\left( {{a^2} + 2ab + {b^2} - ac - bc + {c^2} - 3ab} \right)\)
\( = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - ac - bc} \right)\)
Vì \(a + b + c = 0\) nên \({a^3} + {b^3} + {c^3} - 3abc = 0\).
Như vậy, với a + b + c = 0, ta có: \({a^3} + {b^3} + {c^3} = 3abc\).
Cho hai biểu thức:
\(P = {\left( {4x + 1} \right)^3} - \left( {4x + 3} \right)\left( {16{x^2} + 3} \right)\);
\(Q = {\left( {x - 2} \right)^3} - x\left( {x + 1} \right)\left( {x - 1} \right) + 6x\left( {x - 3} \right) + 5x\).
Tìm mối quan hệ giữa hai biểu thức P, Q.