Lời giải
Đáp án đúng là: D
\[\frac{{3{\rm{x}} + 12}}{{4{\rm{x}} - 16}} \cdot \frac{{8 - 2{\rm{x}}}}{{{\rm{x}} + 4}} = \frac{{3\left( {{\rm{x}} + 4} \right)}}{{4\left( {{\rm{x}} - 4} \right)}} \cdot \frac{{2\left( {4 - {\rm{x}}} \right)}}{{{\rm{x}} + 4}}\]
\[ = \frac{{3\left( {{\rm{x}} + 4} \right)}}{{4\left( {{\rm{x}} - 4} \right)}} \cdot \frac{{ - 2\left( {{\rm{x}} - 4} \right)}}{{{\rm{x}} + 4}} = \frac{{ - 3}}{2}\].
Tìm giá trị của x để phân thức A chia hết cho phân thức B biết:
\(A = \frac{{{x^3} - {x^2} - x + 11}}{{x - 2}};\,\,B = \frac{{x + 2}}{{x - 2}}\).
Cho\(A = \frac{{{x^2} + {y^2} + xy}}{{{x^2} - {y^2}}}:\frac{{{x^3} - {y^3}}}{{{x^2} + {y^2} - 2xy}}\)và \(B = \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}:\frac{{{x^2} - 2xy + {y^2}}}{{{x^4} - {y^4}}}\).
Khi x + y = 5 hãy so sánh A và B.