Đường thẳng Δ đi qua giao điểm của hai đường thẳng d1: 2x + y – 3 = 0 và d2: x – 2y + 1 = 0 đồng thời tạo với đường thẳng d3: y – 1 = 0 một góc 45° có phương trình là
A. x + = 0 hoặc x – y – 1 = 0;
B. x + 2y = 0 hoặc x – 4y = 0;
C. x – y = 0 hoặc x + y – 2 = 0;
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác cân ABC có cạnh đáy BC: x – 3y – 1 = 0, cạnh bên AB: x – y – 5 = 0. Đường thẳng AC đi qua M(−4; 1). Giả sử toạ độ đỉnh C(m; n). Giá trị T = m + n là
Trong mặt phẳng tọa độ Oxy, hai đường thẳng có phương trình (d1) : x – y – 1 = 0, (d2): 2x + y – 5 = 0. Gọi A là giao điểm của hai đường thẳng trên. Biết rằng có hai đường thẳng (d) đi qua M(1; –1) cắt hai đường thẳng trên lần lượt tại hai điểm B, C sao cho ABC là tam giác có BC = 3AB có dạng: ax + y + b = 0 và cx + y + d = 0, giá trị của T = a + b + c + d là
Trong mặt phẳng tọa độ Oxy, có bao nhiêu đường thẳng d đi qua điểm A(2; 0) và tạo với trục hoành một góc 45°?
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng d có hệ số góc là số âm và đi qua A(–2; 0) tạo với đường thẳng Δ: x + 3y – 3 = 0 một góc 45° là
Trong mặt phẳng tọa độ Oxy, đường thẳng Δ tạo với đường thẳng d: y = –2x + 4 một góc 45°. Hệ số góc k của đường thẳng Δ là
Biết rằng có đúng hai giá trị của tham số k để đường thẳng d: y = kx tạo với đường thẳng ∆: y = x một góc 60°. Tổng hai giá trị của k bằng
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng d đi qua M(–1; 2) và tạo với trục Ox một góc 60° là
Trong mặt phẳng tọa độ Oxy, phương trình đường thẳng Δ đi qua M(1; 1) và tạo với đường thẳng d: x – y + 90 = 0 một góc 45° là
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 3x – 4y – 12 = 0. Phương trình các đường thẳng Δ đi qua điểm M(2; –1) và tạo với d một góc 45° là