Cho góc \[\alpha \] thỏa mãn \[\sin \alpha = \frac{1}{2}.\] Giá trị của \(P = \cos 2\alpha \) là
D. \[P = \frac{2}{3}.\]
Chọn C
a) Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = - 3;\,\,{u_6} = 27\). Tính \({u_{12}}.\)
b) Bạn An thả quả bóng cao su từ độ cao \(10\) m theo phương thẳng đứng. Mỗi khi chạm đất nó lại nảy lên theo phương thẳng đứng có độ cao bằng \(\frac{3}{4}\) độ cao trước đó. Tính tổng quãng đường bóng đi được đến khi bóng dừng hẳn.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với \(AB{\rm{//}}CD.\) Gọi \(\Delta \) là giao tuyến chung của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right).\) Đường thẳng \(\Delta \) song song với đường thẳng nào dưới đây?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB.\) Gọi \(P,\,\,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\) và \(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Khẳng định nào sau đây là đúng?
Trong các dãy số có công thức tổng quát sau đây, dãy số nào là dãy số tăng?
Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 3\) và \({u_2} = - 6\). Công bội \(q\) của cấp số nhân là
Cho đường thẳng \(a\) nằm trong mặt phẳng \(\left( \alpha \right)\) và đường thẳng \(b\) nằm trong mặt phẳng \(\left( \beta \right)\). Nếu \(\left( \alpha \right){\rm{//}}\left( \beta \right)\) thì mệnh đề nào dưới đề nào sau đây sai?
a) Cho biết \(\sin x = \frac{3}{4}.\) Tính giá trị của biểu thức \(P = {\sin ^2}2x.\)
b) Giải phương trình \(\sin 2x - \cos \left( {x - \frac{\pi }{6}} \right) = 0.\)
\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x + 1}}{{x - 1}}\) bằng