Đề kiểm tra Cuối kì 1 Toán 11 Cánh Diều có đáp án - Đề 02
-
117 lượt thi
-
29 câu hỏi
-
90 phút
Danh sách câu hỏi
Câu 2:
Cho góc \[\alpha \] thỏa mãn \[\sin \alpha = \frac{1}{2}.\] Giá trị của \(P = \cos 2\alpha \) là
Chọn C
Câu 6:
Trong các dãy số có công thức tổng quát sau đây, dãy số nào là dãy số tăng?
Chọn A
Câu 8:
Cho dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng có \({u_1} = 3\) và công sai \(d = 4\). Biết tổng \(n\) số hạng đầu tiền của dãy số \(\left( {{u_n}} \right)\) là \({S_n} = 253\). Giá trị của \(n\) là
Chọn B
Câu 9:
Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 3\) và \({u_2} = - 6\). Công bội \(q\) của cấp số nhân là
Chọn B
Câu 10:
Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = - 2\) và công bội \(q = \frac{1}{2}\). Số hạng thứ 10 của cấp số nhân là
Chọn A
Câu 12:
Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \(\left| {{u_n} - 2} \right| < \frac{1}{{{n^3}}}\) với mọi \(n \in {\mathbb{N}^*}\). Khi đó
Chọn D
Câu 13:
Cho hai hàm số \(f\left( x \right),\,\,g\left( x \right)\) thỏa mãn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 4\) và \(\mathop {\lim }\limits_{x \to 2} g\left( x \right) = 1.\) Giá trị của \(\mathop {\lim }\limits_{x \to 2} \left[ {f\left( x \right) + g\left( x \right)} \right]\) bằng
Chọn A
Câu 16:
Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} + 8x + m}}{{x - 1}}\;\,\,{\rm{khi}}\;\,x \ne 1\\n\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\,\,\,{\rm{khi}}\;\,x = 1\end{array} \right.\] , với \(m,\,\,n\) là các tham số thực. Biết rằng hàm số \(f\left( x \right)\) liên tục tại \(x = 1\), khi đó giá trị của biểu thức \(P = m + n\) bằng
Chọn B
Câu 17:
Cho hình chóp \(S.ABCD\) có đáy là hình thang \(ABCD\) và \(AB{\rm{//}}CD.\) Khẳng định nào sau đây là sai?
Chọn D
Câu 19:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với \(AB{\rm{//}}CD.\) Gọi \(\Delta \) là giao tuyến chung của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right).\) Đường thẳng \(\Delta \) song song với đường thẳng nào dưới đây?
Chọn A
Câu 20:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB.\) Gọi \(P,\,\,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\) và \(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Khẳng định nào sau đây là đúng?
Chọn C
Câu 21:
Cho đường thẳng \(a\) nằm trong mặt phẳng \(\left( \alpha \right)\) và đường thẳng \(b\) nằm trong mặt phẳng \(\left( \beta \right)\). Nếu \(\left( \alpha \right){\rm{//}}\left( \beta \right)\) thì mệnh đề nào dưới đề nào sau đây sai?
Chọn A
Câu 22:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(M,\,\,N,\,\,P\) theo thứ tự là trung điểm của \(SA,\,\,SD\) và \(AB\). Khẳng định nào sau đây đúng?
Chọn C
Câu 23:
Cho hình lăng trụ tam giác \(ABC.A'B'C'.\) Gọi \(M\) là trung điểm của \(BC.\) Đường thẳng \(AM\) song song với mặt phẳng nào dưới đây?
Chọn A
Câu 25:
Trong các hình vẽ sau có bao nhiêu hình là hình biểu diễn của một tứ diện?
Chọn C
Câu 26:
a) Cho biết \(\sin x = \frac{3}{4}.\) Tính giá trị của biểu thức \(P = {\sin ^2}2x.\)
b) Giải phương trình \(\sin 2x - \cos \left( {x - \frac{\pi }{6}} \right) = 0.\)
a) Ta có: \({\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x = 1 - {\left( {\frac{3}{4}} \right)^2} = \frac{7}{{16}}.\)
\( \Rightarrow P = {\sin ^2}2x = {\left( {2\sin x.\cos x} \right)^2} = 4{\sin ^2}x.{\cos ^2}x = 4.{\left( {\frac{3}{4}} \right)^2}.\frac{7}{{16}} = \frac{{63}}{{64}}.\)
b) Ta có: \(\sin 2x - \cos \left( {x - \frac{\pi }{6}} \right) = 0 \Leftrightarrow \sin 2x = \cos \left( {x - \frac{\pi }{6}} \right)\)
\( \Leftrightarrow \cos \left( {\frac{\pi }{2} - 2x} \right) = \cos \left( {x - \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{2} - 2x = x - \frac{\pi }{6} + k2\pi \\\frac{\pi }{2} - 2x = - \left( {x - \frac{\pi }{6}} \right) + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{2\pi }}{9} - \frac{{k2\pi }}{3}\\x = \frac{\pi }{3} - k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right).\)
Câu 27:
a) Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = - 3;\,\,{u_6} = 27\). Tính \({u_{12}}.\)
b) Bạn An thả quả bóng cao su từ độ cao \(10\) m theo phương thẳng đứng. Mỗi khi chạm đất nó lại nảy lên theo phương thẳng đứng có độ cao bằng \(\frac{3}{4}\) độ cao trước đó. Tính tổng quãng đường bóng đi được đến khi bóng dừng hẳn.
a) Gọi \(d\) là công sai của cấp số cộng \(\left( {{u_n}} \right)\) đã cho nên \({u_6} = {u_1} + 5d\)\( \Leftrightarrow 27 = - 3 + 5d\)\( \Leftrightarrow d = 6\).
\( \Rightarrow {u_{12}} = {u_1} + \left( {12 - 1} \right)d = - 3 + \left( {12 - 1} \right)6 = 63.\)
b) Gọi \({u_n}\) là quãng đường quả bóng cao su đi xuống lần thứ \(n,\,\,\left( {n \in {\mathbb{N}^*}} \right).\)
Quãng đường quả bóng cao su đi xuống lần thứ nhất là \({u_1} = 10\) (m).
Quãng đường quả bóng cao su đi xuống lần thứ hai là \({u_2} = \frac{3}{4}{u_1} = \frac{3}{4}.10\) (m).
Quãng đường quả bóng cao su đi xuống lần thứ ba là
\({u_3} = \frac{3}{4}{u_2} = \frac{3}{4}.\frac{3}{4}10 = {\left( {\frac{3}{4}} \right)^2}.10\) (m).
Khi đó, dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = 10\) và công bội \(q = \frac{3}{4}.\)
Vì \(\left| q \right| = \frac{3}{4} < 1\) nên dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân lùi vô hạn.
Tổng các quãng đường khi bóng đi xuống là \({S_n} = \frac{{{u_1}}}{{1 - q}}\)\( = \frac{{10}}{{1 - \frac{3}{4}}}\) \( = 40\) (m).
Vì bạn A thả quả bóng cao su từ độ cao \(10\) m theo phương thẳng đứng nên tổng quãng đường bóng đi được đến khi bóng dừng hẳn là \(2S - 10 = 70\) (m).
Câu 28:
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{n - 1}}{{2n + 3}}\);
b) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^3} - {x^2}} }}{{\sqrt {x - 1} + 1 - x}}.\)
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{n - 1}}{{2n + 3}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{n\left( {1 - \frac{1}{n}} \right)}}{{n\left( {2 + \frac{3}{n}} \right)}}\) \[ = \mathop {\lim }\limits_{n \to + \infty } \frac{{1 - \frac{1}{n}}}{{2 + \frac{3}{n}}} = \frac{{\mathop {\lim }\limits_{n \to + \infty } \left( {1 - \frac{1}{n}} \right)}}{{\mathop {\lim }\limits_{n \to + \infty } \left( {2 + \frac{3}{n}} \right)}} = \frac{1}{2}\].
b) \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^3} - {x^2}} }}{{\sqrt {x - 1} + 1 - x}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^2}\left( {x - 1} \right)} }}{{\sqrt {x - 1} - \left( {x - 1} \right)}}\)\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x\sqrt {\left( {x - 1} \right)} }}{{\sqrt {x - 1} \left( {1 - \sqrt {x - 1} } \right)}}\)
\( = \mathop {\lim }\limits_{x \to {1^ + }} \frac{x}{{1 - \sqrt {x - 1} }} = \frac{1}{{1 - \sqrt {1 - 1} }} = 1.\)
Câu 29:
Cho tứ diện \(ABCD\), trên \(AC\) và \(AD\) lấy hai điểm \(M,\,\,N\) sao cho \(MN\) không song song với \(CD.\) Gọi \(O\) là điểm bên trong tam giác \(BCD\).
a) Tìm giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {BCD} \right)\).
b) Tìm giao điểm của \(BC\) với \(\left( {OMN} \right)\).
a) Trong mặt phẳng \(\left( {ACD} \right)\) có \(MN\) không song song với \(CD\) nên \(MN \cap CD = E\).
\( \Rightarrow \left\{ \begin{array}{l}E \in MN \subset \left( {OMN} \right)\\E \in CD \subset \left( {BCD} \right)\end{array} \right.\), suy ra \(E \in \left( {OMN} \right) \cap \left( {BCD} \right).\)
Vì \(O\) là điểm bên trong tam giác \(BCD\) nên \(O \in \left( {OMN} \right) \cap \left( {BCD} \right).\)
Từ các kết quả trên ta có \(OE = \left( {OMN} \right) \cap \left( {BCD} \right).\)
b) Trong mặt phẳng \(\left( {BCD} \right),\)gọi \(K = OE \cap BC.\)
Vì \(\left\{ \begin{array}{l}K \in BC\\K \in OE \subset \left( {OMN} \right)\end{array} \right.\) nên \(K = BC \cap \left( {OMN} \right)\).