Cho tứ diện \(ABCD\), trên \(AC\) và \(AD\) lấy hai điểm \(M,\,\,N\) sao cho \(MN\) không song song với \(CD.\) Gọi \(O\) là điểm bên trong tam giác \(BCD\).
a) Tìm giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {BCD} \right)\).
b) Tìm giao điểm của \(BC\) với \(\left( {OMN} \right)\).
a) Trong mặt phẳng \(\left( {ACD} \right)\) có \(MN\) không song song với \(CD\) nên \(MN \cap CD = E\).
\( \Rightarrow \left\{ \begin{array}{l}E \in MN \subset \left( {OMN} \right)\\E \in CD \subset \left( {BCD} \right)\end{array} \right.\), suy ra \(E \in \left( {OMN} \right) \cap \left( {BCD} \right).\)
Vì \(O\) là điểm bên trong tam giác \(BCD\) nên \(O \in \left( {OMN} \right) \cap \left( {BCD} \right).\)
Từ các kết quả trên ta có \(OE = \left( {OMN} \right) \cap \left( {BCD} \right).\)
b) Trong mặt phẳng \(\left( {BCD} \right),\)gọi \(K = OE \cap BC.\)
Vì \(\left\{ \begin{array}{l}K \in BC\\K \in OE \subset \left( {OMN} \right)\end{array} \right.\) nên \(K = BC \cap \left( {OMN} \right)\).
a) Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = - 3;\,\,{u_6} = 27\). Tính \({u_{12}}.\)
b) Bạn An thả quả bóng cao su từ độ cao \(10\) m theo phương thẳng đứng. Mỗi khi chạm đất nó lại nảy lên theo phương thẳng đứng có độ cao bằng \(\frac{3}{4}\) độ cao trước đó. Tính tổng quãng đường bóng đi được đến khi bóng dừng hẳn.
Cho đường thẳng \(a\) nằm trong mặt phẳng \(\left( \alpha \right)\) và đường thẳng \(b\) nằm trong mặt phẳng \(\left( \beta \right)\). Nếu \(\left( \alpha \right){\rm{//}}\left( \beta \right)\) thì mệnh đề nào dưới đề nào sau đây sai?
a) Cho biết \(\sin x = \frac{3}{4}.\) Tính giá trị của biểu thức \(P = {\sin ^2}2x.\)
b) Giải phương trình \(\sin 2x - \cos \left( {x - \frac{\pi }{6}} \right) = 0.\)
Cho góc \[\alpha \] thỏa mãn \[\sin \alpha = \frac{1}{2}.\] Giá trị của \(P = \cos 2\alpha \) là
Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 3\) và \({u_2} = - 6\). Công bội \(q\) của cấp số nhân là
Cho hình chóp \(S.ABCD\) có đáy là hình thang \(ABCD\) và \(AB{\rm{//}}CD.\) Khẳng định nào sau đây là sai?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB.\) Gọi \(P,\,\,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\) và \(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Khẳng định nào sau đây là đúng?