Thứ năm, 26/12/2024
IMG-LOGO
Trang chủ Lớp 11 Toán Đề kiểm tra Cuối kì 1 Toán 11 Cánh Diều có đáp án

Đề kiểm tra Cuối kì 1 Toán 11 Cánh Diều có đáp án

Đề kiểm tra Cuối kì 1 Toán 11 Cánh Diều có đáp án - Đề 01

  • 116 lượt thi

  • 38 câu hỏi

  • 90 phút

Danh sách câu hỏi

Câu 2:

Chọn mệnh đề đúng trong các mệnh đề sau.


Câu 3:

Trong các mệnh đề sau, mệnh đề nào sai?


Câu 4:

Cho \(\sin x = \frac{2}{3}\). Giá trị của biểu thức \(P = \sin 2x.\cos x\) bằng

Câu 5:

Tập xác định của hàm số \[y = \tan \left( {x + \frac{\pi }{3}} \right)\]


Câu 6:

Hàm số nào sau đây là một hàm số chẵn?


Câu 7:

Công thức nghiệm của phương trình \(\cos x = \cos \alpha \)


Câu 8:

Nghiệm của phương trình \(\tan x = \sqrt 3 \)


Câu 9:

Với những giá trị nào của \(m\) thì phương trình \({\cos ^2}x - m = 2\) có nghiệm?


Câu 10:

Dãy số nào sau đây là dãy số tăng?


Câu 14:

Cho cấp số nhân có các số hạng lần lượt là \(2;\,\,4;\,\,8;\,\,16;...\) Số hạng tổng quát \({u_n}\) của cấp số nhân đó là


Câu 21:

Cho các hàm số \(y = \cos x\,\,\,\left( I \right)\), \(y = \sin \sqrt x \,\,\left( {II} \right)\)\(y = \tan x\,\,\,\left( {III} \right)\). Hàm số nào liên tục trên \(\mathbb{R}\)?


Câu 24:

Trong các khẳng định sau, khẳng định nào đúng?


Câu 26:

Cho tứ diện \(ABCD.\) Gọi \(I,\,\,J\) lần lượt là trọng tâm của các tam giác \(ABC\)\(ABD.\) Khẳng định nào sau đây đúng?


Câu 27:

Cho đường thẳng \(a\) và mặt phẳng \(\left( P \right)\) không có điểm chung. Kết luận nào sau đây đúng?


Câu 28:

Cho hình chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Khẳng định nào sau đây sai?


Câu 30:

Trong các mệnh đề sau, mệnh đề nào sai?


Câu 31:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O.\) Gọi \(M,\,\,N,\,\,P\) lần lượt là trung điểm của \(SA,\,\,SD,\,\,AB.\) Khẳng định nào sau đây đúng?


Câu 32:

Hình lăng trụ có đáy là hình bình hành được gọi là


Câu 33:

Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\] Trong các khẳng định sau, khẳng định nào sai?


Câu 35:

Phép chiếu song song biến ba đường thẳng song song thành

Câu 36:

Tính các giới hạn sau:

a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right).\]  b) \[\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}}.\]

Xem đáp án

a) Ta có: \[1 + n - {n^2} = {n^2}\left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right).\]

Mặt khác: \(\mathop {\lim }\limits_{n \to + \infty } {n^2} = + \infty ;\)

                 \(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^2}}} + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} - \mathop {\lim }\limits_{n \to + \infty } 1 = 0 + 0 - 1 = - 1 < 0.\)

\( \Rightarrow \mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right) = \mathop {\lim }\limits_{n \to + \infty } \left[ {{n^2}\left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right)} \right] = \mathop {\lim }\limits_{n \to + \infty } {n^2}.\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right) = - \infty .\)

b) \[\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 2x + 4}}{{x + 2}} = \frac{{{2^2} + 2.2 + 4}}{{2 + 2}} = 3.\]


Câu 37:

Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M,\,N\) lần lượt là trung điểm của \(A'B'\)\(AB\).

a) Chứng minh \(CB'\,\,{\rm{//}}\,\left( {AMC'} \right)\).

b) Mặt phẳng \(\left( P \right)\) đi qua \(N\) song song với hai cạnh \(AB'\)\(AC'\). Tìm giao tuyến của hai mặt phẳng \(\left( P \right)\)\(\left( {BB'C'} \right)\).

Xem đáp án

a)

Cho hình lăng trụ tam giác ABC.A'B'C' gọi M, N (ảnh 1)

\(M,\,N\) lần lượt là trung điểm của \(A'B'\)\(AB\) nên \(MN\) là đường trung bình của hình thang \(ABB'A'\). Suy ra \(MN{\rm{//}}AA'\)\(MN\, = \,AA'\) (do \(ABB'A'\) là hình bình hành).

Ta có: \[MN{\rm{//}}AA'\]\[AA'{\rm{//}}CC'\] (tính chất hình lăng trụ).

\[ \Rightarrow MN{\rm{//AA'}}{\rm{.}}\]

Lại có \(AA' = CC'\) (tính chất hình lăng trụ), mà \(MN\, = \,AA'\) nên \[MN = CC'\].

Do đó, tứ giác \[MNCC'\] là hình bình hành. Suy ra \[CN{\rm{//}}MC'.\]

Ta có \[\left\{ \begin{array}{l}CN{\rm{ // }}MC'\\MC' \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow CN{\rm{ // }}\left( {AMC'} \right).\]

Mặt khác ta chứng minh được \[AN{\rm{//}}B'M;\,\,AN = B'M\] nên tứ giác \[ANB'M\] là hình bình hành. Suy ra \[NB'{\rm{//}}MA.\]

Ta có \[\left\{ \begin{array}{l}NB'{\rm{//}}MA\\MA \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow NB'{\rm{//}}\left( {AMC'} \right).\]

Lại có \[\left\{ \begin{array}{l}CN{\rm{//}}\left( {AMC'} \right)\\NB'{\rm{//}}\left( {AMC'} \right)\\CN,NB' \subset \left( {CNB'} \right)\\CN \cap NB' = \left\{ N \right\}\end{array} \right. \Rightarrow \left( {AMC'} \right){\rm{//}}\left( {CNB'} \right).\]

\[CB' \subset \left( {CNB'} \right).\,\,\,{\rm{Suy}}\,\,{\rm{ra}}\,\,\,CB'\,{\rm{//}}\,\left( {AMC'} \right)\].

b)

Cho hình lăng trụ tam giác ABC.A'B'C' gọi M, N (ảnh 2)

Trong mặt phẳng \(\left( {ABB'A'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AB'\), cắt \(BB'\) tại \(E\).

Trong mặt phẳng \(\left( {ABC'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AC'\), cắt \(BC'\) tại \(Q\).

Khi đó, mặt phẳng \(\left( P \right)\) chính là mặt phẳng \(\left( {NQE} \right)\).

\(E \in BB'\) nên \(E \in \left( {BB'C'} \right)\); vì \(Q \in BC'\) nên \(Q \in \left( {BB'C'} \right)\). Do đó, \(EQ \subset \left( {BB'C'} \right)\).

Vậy \[\left( {NQE} \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\] hay \[\left( P \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\].


Câu 38:

Cho hình vuông \(\left( {{C_1}} \right)\) có cạnh bằng \(a.\) Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông \(\left( {{C_2}} \right)\) (xem hình vẽ). Từ hình vuông \(\left( {{C_2}} \right)\) lại tiếp tục làm như trên ta nhận được dãy các hình vuông \({C_1},\,\,{C_2},\,\,{C_3},\,...,\,{C_n},\,...\). Gọi \({S_i}\) là diện tích của hình vuông \({C_i}\,\,\left( {i \in \left\{ {1;\,\,2;\,\,3;\,\,...} \right\}} \right)\). Đặt \(T = {S_1} + {S_2} + {S_3} + ... + {S_n} + ...\). Biết \(T = \frac{{32}}{3}\), tính \(a.\)
 
Xem đáp án

Hình vuông đầu tiên \(\left( {{C_1}} \right)\) có cạnh bằng \(a\) và diện tích là \({S_1} = {a^2}\).

Từ đề bài, ta thấy cạnh của hình vuông \(\left( {{C_2}} \right)\)\({a_2} = \sqrt {{{\left( {\frac{3}{4}a} \right)}^2} + {{\left( {\frac{1}{4}a} \right)}^2}} = \frac{{a\sqrt {10} }}{4}\).

Khi đó diện tích của hình vuông \(\left( {{C_2}} \right)\)\({S_2} = {\left( {\frac{{a\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}{a^2} = \frac{5}{8}{S_1}\).

Cạnh của hình vuông \(\left( {{C_3}} \right)\)\({a_3} = \sqrt {{{\left( {\frac{3}{4}{a_2}} \right)}^2} + {{\left( {\frac{1}{4}{a_2}} \right)}^2}} = \frac{{{a_2}\sqrt {10} }}{4} = a{\left( {\frac{{\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}a.\)

Khi đó diện tích của hình vuông \(\left( {{C_3}} \right)\)\({S_3} = {\left( {\frac{5}{8}a} \right)^2} = {\left( {\frac{5}{8}} \right)^2}{a^2} = {\left( {\frac{5}{8}} \right)^2}{S_1}.\)

Lý luận tương tự ta có \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) tạo thành một dãy cấp số nhân \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}\).

\(\left| q \right| = \frac{5}{8} < 1\) nên \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) là một cấp số nhân lùi vô hạn với \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}.\)

Tổng của cấp số nhân lùi vô hạn này là

\(T = {S_1} + {S_2} + {S_3} + ... + {S_n} + ...\)\( = \frac{{{S_1}}}{{1 - q}} = \frac{{{a^2}}}{{1 - \frac{5}{8}}} = \frac{{8{a^2}}}{3}\).

\(T = \frac{{32}}{3}\) nên \(\frac{{8{a^2}}}{3} = \frac{{32}}{3} \Leftrightarrow {a^2} = 4\). Suy ra \(a = 2\) (do độ dài cạnh là số dương).


Bắt đầu thi ngay