Đề kiểm tra Cuối kì 1 Toán 11 Cánh Diều có đáp án - Đề 01
-
116 lượt thi
-
38 câu hỏi
-
90 phút
Danh sách câu hỏi
Câu 1:
Trên đường tròn lượng giác, gọi \(M\left( {{x_0};{y_0}} \right)\) là điểm biểu diễn cho góc lượng giác có số đo \(\alpha \). Mệnh đề nào đúng trong các mệnh đề sau?
Chọn A
Câu 4:
Chọn A
Câu 5:
Tập xác định của hàm số \[y = \tan \left( {x + \frac{\pi }{3}} \right)\] là
Chọn A
Câu 9:
Với những giá trị nào của \(m\) thì phương trình \({\cos ^2}x - m = 2\) có nghiệm?
Chọn D
Câu 11:
Cho dãy số \(\left( {{u_n}} \right)\), biết \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = {u_n} + n\end{array} \right.\) với \(n \ge 1\). Số hạng thứ 3 của dãy số đó là:
Chọn A
Câu 12:
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_1} = 5\) và \({u_2} = 1.\) Công sai của cấp số cộng đã cho bằng
Chọn B
Câu 13:
Cho tam giác \(ABC\) có số đo của ba góc lập thành cấp số cộng và số đo góc nhỏ nhất bằng \(30^\circ .\) Góc có số đo lớn nhất trong ba góc của tam giác này là
Chọn B
Câu 14:
Cho cấp số nhân có các số hạng lần lượt là \(2;\,\,4;\,\,8;\,\,16;...\) Số hạng tổng quát \({u_n}\) của cấp số nhân đó là
Chọn C
Câu 15:
Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = - 2\) và công bội \(q = \frac{1}{2}\). Số hạng thứ \(10\) của cấp số nhân là
Chọn A
Câu 16:
Cho hai dãy \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) thỏa mãn \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = \frac{1}{2}\) và \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = - 2.\) Giá trị của \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n}.{v_n}} \right)\) bằng
Chọn A
Câu 17:
Biết \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{{\left( {1 - 2n} \right)}^3}}}{{a{n^3} + 2}} = 4\) với \(a\) là tham số. Khi đó \(a - {a^2}\) bằng
Chọn B
Câu 18:
Chọn A
Câu 19:
Kết quả của giới hạn \(\mathop {\lim }\limits_{x \to - 1} \left( {x + 1} \right)\) là
Chọn A
Câu 20:
Hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây:
Hàm số gián đoạn tại điểm
Chọn A
Câu 21:
Cho các hàm số \(y = \cos x\,\,\,\left( I \right)\), \(y = \sin \sqrt x \,\,\left( {II} \right)\) và \(y = \tan x\,\,\,\left( {III} \right)\). Hàm số nào liên tục trên \(\mathbb{R}\)?
Chọn B
Câu 22:
Tìm khẳng định đúng trong các khẳng định sau:
I. \[f\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\] và \[f\left( a \right) \cdot f\left( b \right) < 0\] thì phương trình \[f\left( x \right) = 0\] có nghiệm.
II. \[f\left( x \right)\] không liên tục trên \[\left[ {a;b} \right]\] và \[f\left( a \right) \cdot f\left( b \right) \ge 0\] thì phương trình \[f\left( x \right) = 0\] vô nghiệm.
Chọn A
Câu 23:
Cho hình chóp tứ giác \(S.ABCD.\) Gọi \(O\) là giao điểm của \(AC\) và \[BD.\] Trong các mặt phẳng sau, điểm \(O\) không nằm trên mặt phẳng nào?
Chọn B
Câu 25:
Cho tứ diện \(ABCD,\) vị trí tương đối của hai đường thẳng \(AC\) và \(BD\) là
Chọn C
Câu 26:
Cho tứ diện \(ABCD.\) Gọi \(I,\,\,J\) lần lượt là trọng tâm của các tam giác \(ABC\) và \(ABD.\) Khẳng định nào sau đây đúng?
Chọn D
Câu 27:
Cho đường thẳng \(a\) và mặt phẳng \(\left( P \right)\) không có điểm chung. Kết luận nào sau đây đúng?
Chọn C
Câu 28:
Cho hình chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Khẳng định nào sau đây sai?
Chọn D
Câu 29:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng song song với mặt phẳng nào sau đây?
Chọn A
Câu 31:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O.\) Gọi \(M,\,\,N,\,\,P\) lần lượt là trung điểm của \(SA,\,\,SD,\,\,AB.\) Khẳng định nào sau đây đúng?
Chọn B
Câu 33:
Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\] Trong các khẳng định sau, khẳng định nào sai?
Chọn D
Câu 36:
Tính các giới hạn sau:
a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right).\] b) \[\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}}.\]
a) Ta có: \[1 + n - {n^2} = {n^2}\left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right).\]
Mặt khác: \(\mathop {\lim }\limits_{n \to + \infty } {n^2} = + \infty ;\)
\(\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^2}}} + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} - \mathop {\lim }\limits_{n \to + \infty } 1 = 0 + 0 - 1 = - 1 < 0.\)
\( \Rightarrow \mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right) = \mathop {\lim }\limits_{n \to + \infty } \left[ {{n^2}\left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right)} \right] = \mathop {\lim }\limits_{n \to + \infty } {n^2}.\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right) = - \infty .\)
b) \[\mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 8}}{{{x^2} - 4}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 2x + 4}}{{x + 2}} = \frac{{{2^2} + 2.2 + 4}}{{2 + 2}} = 3.\]
Câu 37:
Cho hình lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(M,\,N\) lần lượt là trung điểm của \(A'B'\) và \(AB\).
a) Chứng minh \(CB'\,\,{\rm{//}}\,\left( {AMC'} \right)\).
b) Mặt phẳng \(\left( P \right)\) đi qua \(N\) song song với hai cạnh \(AB'\) và \(AC'\). Tìm giao tuyến của hai mặt phẳng \(\left( P \right)\) và \(\left( {BB'C'} \right)\).
a)
Vì \(M,\,N\) lần lượt là trung điểm của \(A'B'\) và \(AB\) nên \(MN\) là đường trung bình của hình thang \(ABB'A'\). Suy ra \(MN{\rm{//}}AA'\) và \(MN\, = \,AA'\) (do \(ABB'A'\) là hình bình hành).
Ta có: \[MN{\rm{//}}AA'\] và \[AA'{\rm{//}}CC'\] (tính chất hình lăng trụ).
\[ \Rightarrow MN{\rm{//AA'}}{\rm{.}}\]
Lại có \(AA' = CC'\) (tính chất hình lăng trụ), mà \(MN\, = \,AA'\) nên \[MN = CC'\].
Do đó, tứ giác \[MNCC'\] là hình bình hành. Suy ra \[CN{\rm{//}}MC'.\]
Ta có \[\left\{ \begin{array}{l}CN{\rm{ // }}MC'\\MC' \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow CN{\rm{ // }}\left( {AMC'} \right).\]
Mặt khác ta chứng minh được \[AN{\rm{//}}B'M;\,\,AN = B'M\] nên tứ giác \[ANB'M\] là hình bình hành. Suy ra \[NB'{\rm{//}}MA.\]
Ta có \[\left\{ \begin{array}{l}NB'{\rm{//}}MA\\MA \subset \left( {AMC'} \right)\end{array} \right. \Rightarrow NB'{\rm{//}}\left( {AMC'} \right).\]
Lại có \[\left\{ \begin{array}{l}CN{\rm{//}}\left( {AMC'} \right)\\NB'{\rm{//}}\left( {AMC'} \right)\\CN,NB' \subset \left( {CNB'} \right)\\CN \cap NB' = \left\{ N \right\}\end{array} \right. \Rightarrow \left( {AMC'} \right){\rm{//}}\left( {CNB'} \right).\]
Mà \[CB' \subset \left( {CNB'} \right).\,\,\,{\rm{Suy}}\,\,{\rm{ra}}\,\,\,CB'\,{\rm{//}}\,\left( {AMC'} \right)\].
b)
Trong mặt phẳng \(\left( {ABB'A'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AB'\), cắt \(BB'\) tại \(E\).
Trong mặt phẳng \(\left( {ABC'} \right)\), kẻ đường thẳng qua \(N\) song song với \(AC'\), cắt \(BC'\) tại \(Q\).
Khi đó, mặt phẳng \(\left( P \right)\) chính là mặt phẳng \(\left( {NQE} \right)\).
Vì \(E \in BB'\) nên \(E \in \left( {BB'C'} \right)\); vì \(Q \in BC'\) nên \(Q \in \left( {BB'C'} \right)\). Do đó, \(EQ \subset \left( {BB'C'} \right)\).
Vậy \[\left( {NQE} \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\] hay \[\left( P \right) \cap \left( {BB'C'} \right)\,\, = \,\,EQ\].
Câu 38:
Hình vuông đầu tiên \(\left( {{C_1}} \right)\) có cạnh bằng \(a\) và diện tích là \({S_1} = {a^2}\).
Từ đề bài, ta thấy cạnh của hình vuông \(\left( {{C_2}} \right)\) là \({a_2} = \sqrt {{{\left( {\frac{3}{4}a} \right)}^2} + {{\left( {\frac{1}{4}a} \right)}^2}} = \frac{{a\sqrt {10} }}{4}\).
Khi đó diện tích của hình vuông \(\left( {{C_2}} \right)\) là \({S_2} = {\left( {\frac{{a\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}{a^2} = \frac{5}{8}{S_1}\).
Cạnh của hình vuông \(\left( {{C_3}} \right)\) là \({a_3} = \sqrt {{{\left( {\frac{3}{4}{a_2}} \right)}^2} + {{\left( {\frac{1}{4}{a_2}} \right)}^2}} = \frac{{{a_2}\sqrt {10} }}{4} = a{\left( {\frac{{\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}a.\)
Khi đó diện tích của hình vuông \(\left( {{C_3}} \right)\) là \({S_3} = {\left( {\frac{5}{8}a} \right)^2} = {\left( {\frac{5}{8}} \right)^2}{a^2} = {\left( {\frac{5}{8}} \right)^2}{S_1}.\)
Lý luận tương tự ta có \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) tạo thành một dãy cấp số nhân \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}\).
Vì \(\left| q \right| = \frac{5}{8} < 1\) nên \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) là một cấp số nhân lùi vô hạn với \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}.\)
Tổng của cấp số nhân lùi vô hạn này là
\(T = {S_1} + {S_2} + {S_3} + ... + {S_n} + ...\)\( = \frac{{{S_1}}}{{1 - q}} = \frac{{{a^2}}}{{1 - \frac{5}{8}}} = \frac{{8{a^2}}}{3}\).
Mà \(T = \frac{{32}}{3}\) nên \(\frac{{8{a^2}}}{3} = \frac{{32}}{3} \Leftrightarrow {a^2} = 4\). Suy ra \(a = 2\) (do độ dài cạnh là số dương).