\({Q_1} = 7 + \frac{{\frac{{1 \cdot 100}}{4} - 24}}{{19}} \cdot (8 - 7) \approx 7,053;{Q_3} = 9;{\Delta _Q} \approx 1,947.\) Chọn D.
Chiều cao của các cây bạch đàn (đơn vị: m) ở một khu vườn được ghi lại ở bảng sau.
Nhóm |
\([8;9)\) |
\([9;10)\) |
\([10;11)\) |
\([11;12)\) |
\([12;13)\) |
Tần số |
6 |
9 |
15 |
27 |
3 |
Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng phần trăm).
Bảng tần số tương đối ghép nhóm sau đây ghi lại huyết áp tâm thu của 80 người cao tuổi ở một khu vực (đơn vị: mmHg).
Nhóm |
\([120;125)\) |
\([125;130)\) |
\([130;135)\) |
\([135;140)\) |
\([140;145)\) |
Tần số tương đối |
\(5\% \) |
\(10\% \) |
\(15\% \) |
\(25\% \) |
\(45\% \) |
Tìm mốt của mẫu số liệu ghép nhóm trên (kết quả làm tròn đến hàng đơn vị).
Bạn Minh ghi lại thời gian tập bóng bàn của mình trong 10 ngày ở bảng sau đây (đơn vị: phút).
20 |
21 |
22 |
25 |
28 |
30 |
33 |
35 |
36 |
39 |
Bạn Minh ghép số liệu trên thành 4 nhóm có độ dài bằng nhau, với nhóm đầu tiên là \([20;25).\) Tính hiệu giữa trung bình của mẫu số liệu ghép nhóm và trung bình của mẫu số liệu ban đầu.
Bạn Mai ghi lại thời gian sử dụng điện thoại di động mỗi ngày của mình trong 10 ngày liên tiếp ở bảng sau (đơn vị: phút).
150 |
251 |
73 |
188 |
165 |
225 |
235 |
144 |
160 |
244 |
Bạn Mai ghép số liệu trên thành 4 nhóm có độ dài bằng nhau, với nhóm cuối cùng là [220 ; 270). Tính tỉ số giữa độ lệch chuẩn và trung bình mẫu của mẫu số liệu ghép nhóm (kết quả làm tròn đến hàng phần mười).