Gọi H là hình chiếu của O lên SA. Ta có góc nhị diện [B, SA, D] có số đo bằng \(\widehat {{\rm{BHD}}} = 2\widehat {{\rm{BHO}}}\),
\({\rm{BO}} = \frac{1}{2}{\rm{BD}} = \frac{{{\rm{a}}\sqrt 2 }}{2},{\rm{OH}} = \frac{{{\rm{OA}} \cdot {\rm{OS}}}}{{{\rm{SA}}}} = \frac{{\frac{{\rm{a}}}{{\sqrt 2 }} \cdot \frac{{\rm{a}}}{{\sqrt 2 }}}}{{\sqrt {{{\left( {\frac{{\rm{a}}}{{\sqrt 2 }}} \right)}^2} + {{\left( {\frac{{\rm{a}}}{{\sqrt 2 }}} \right)}^2}} }} = \frac{{\rm{a}}}{2}\)\(\tan \widehat {{\rm{BHO}}} = \frac{{{\rm{BO}}}}{{{\rm{OH}}}} = \frac{{\frac{{\rm{a}}}{{\sqrt 2 }}}}{{\frac{{\rm{a}}}{2}}} = \sqrt 2 \Rightarrow \tan 2\widehat {{\rm{BHO}}} = \frac{{2\tan \widehat {{\rm{BHO}}}}}{{1 - {{\tan }^2}\widehat {{\rm{BHO}}}}} = \frac{{2 \cdot \sqrt 2 }}{{1 - {{(\sqrt 2 )}^2}}} = - 2\sqrt 2 \)
Chọn B.