Đáp án đúng là: B
Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}x - y = 1\\x + 2y = 7.\end{array} \right.\)
Với MTCT phù hợp, ta bấm lần lượt các phím:
Trên màn hình cho kết quả \(x = 3,\) ta bấm tiếp phím = màn hình cho kết quả \(y = 2.\)
Vậy cặp số \(\left( {3;\,\,2} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\x + 2y = 7.\end{array} \right.\)
Cách 2. Thay \(x = 2,\,\,y = 3\) vào hệ phương trình đã cho, ta được: \(\left\{ \begin{array}{l}2 - 3 = - 1 \ne 1\\2 + 2 \cdot 3 = 8 \ne 7\end{array} \right..\)
Tương tự, thay giá trị của \(x\) và \(y\) lần lượt của các cặp số ở phương án B, C, D vào hệ phương trình đã cho, ta thấy chỉ có cặp số \(\left( {3;\,\,2} \right)\) là nghiệm của cả hai phương trình trong hệ.
Vậy cặp số \(\left( {3;\,\,2} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\x + 2y = 7.\end{array} \right.\)
Cách 3. Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = 1\\x + 2y = 7.\end{array} \right.\)
Trừ từng vế phương trình thứ hai cho phương trình thứ nhất của hệ phương trình trên, ta được:
\(3y = 6\) nên \(y = 2.\)
Thay \(y = 2\) vào phương trình \(x - y = 1,\) ta được:
\(x - 2 = 1,\) suy ra \(x = 3.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất là \(\left( {3;\,\,2} \right)\).