Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có \(y' = \frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\). Giả sử \(M\left( {{x_0};\,{y_0}} \right) \in \left( C \right)\), \(\left( {{x_0} \ne 1} \right)\) suy ra tiếp tuyến của \(\left( C \right)\) tại \(M\) có phương trình là \(y = \frac{{ - 1}}{{{{\left( {{x_0} - 1} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{2{x_0} - 1}}{{{x_0} - 1}}\).
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - 1}}{{x - 1}} = + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 1}}{{x - 1}} = - \infty \) nên đường thẳng \(x = 1\) là tiệm cận đứng của \(\left( C \right)\).
Vì \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 1}}{{x - 1}} = 2;\,\,\mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 1}}{{x - 1}} = 2\) nên đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).
Suy ra \(I\left( {1;\,\,2} \right)\).
Điểm \(A\left( {1;\,\frac{{2{x_0}}}{{{x_0} - 1}}} \right)\) là giao điểm của tiệm cận đứng và tiếp tuyến, điểm \(B\left( {2{x_0} - 1;\,2} \right)\) là giao điểm của tiệm cận ngang và tiếp tuyến.
Ta có chu vi của tam giác \(IAB\) bằng:
\(IA + IB + AB = \frac{2}{{\left| {{x_0} - 1} \right|}} + 2\left| {{x_0} - 1} \right| + \sqrt {4{{\left( {{x_0} - 1} \right)}^2} + \frac{4}{{{{\left( {{x_0} - 1} \right)}^2}}}} \).
Áp dụng bất đẳng thức AM-GM, ta có \(IA + IB + AB \ge 2\sqrt 4 + \sqrt {4 \cdot 2} = 4 + \sqrt 8 \).
Đẳng thức xảy ra khi \(\left| {{x_0} - 1} \right| = 1 \Leftrightarrow {x_0} = 0\) hoặc \({x_0} = 2\).
Vậy chu vi tam giác \(IAB\) đạt giá trị nhỏ nhất bằng \(4 + \sqrt 8 \) khi \(M\left( {0;1} \right)\) hoặc \(M\left( {2;3} \right)\).
Suy ra \(a = 4,b = 8\) nên \(a - b + 4 = 0\).
Đáp số: \(0\).
Người ta giăng lưới để nuôi riêng một loại cá trên một góc hồ. Biết rằng lưới được giăng theo một đường thẳng từ một vị trí trên bờ ngang đến một vị trí trên bờ dọc và phải đi qua một cái cọc đã cắm sẵn ở vị trí . Diện tích nhỏ nhất có thể giăng lưới là bao nhiêu mét vuông, biết rằng khoảng cách từ cọc đến bờ ngang là 5 m và khoảng cách từ cọc đến bờ dọc là 12 m.
Có ba lực cùng tác động vào một cái bàn như hình vẽ dưới. Trong đó hai lực tạo với nhau một góc và có độ lớn lần lượt là 9 N và 4 N, lực vuông góc với mặt phẳng tạo bởi hai lực và có độ lớn 7 N. Độ lớn hợp lực của ba lực trên là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị của Newton)?
Cho hàm số liên tục trên và có đồ thị như hình dưới đây.
Phát biểu nào sau đây là đúng?
Cho hàm số .
a) Hàm số đã cho nghịch biến trên .
b) Hàm số đã cho đạt cực đại tại .
c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là .
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.
Có ba lực cùng tác động vào một cái bàn như hình vẽ dưới. Trong đó hai lực tạo với nhau một góc và có độ lớn lần lượt là 9 N và 4 N, lực vuông góc với mặt phẳng tạo bởi hai lực và có độ lớn 7 N. Độ lớn hợp lực của ba lực trên là bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị của Newton)?
Cho tứ diện có đôi một vuông góc và . Gọi là trung điểm của .
a) .
b) .
c) .
d) .
Cho hàm số có đồ thị như hình dưới đây.
Phát biểu nào sau đây là đúng?
Cho hình hộp .
a) Các vectơ bằng với vectơ là .
b) Các vectơ đối của vectơ là .
c) .
d) .
Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số có đồ thị như hình dưới đây.
Tâm đối xứng của đồ thị hàm số có tọa độ là