Đáp án đúng là: B
Gọi \(M\) là trung điểm \(CD\) \( \Rightarrow \overrightarrow {BG} = \frac{2}{3}\overrightarrow {BM} .\)
Ta có: \(\overrightarrow {AG} = \overrightarrow {AB} + \overrightarrow {BG} = \overrightarrow {AB} + \frac{2}{3}\overrightarrow {BM} = \overrightarrow {AB} + \frac{2}{3}.\frac{1}{2}.\left( {\overrightarrow {BC} + \overrightarrow {BD} } \right).\)
\( = \overrightarrow {AB} + \frac{1}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} + \overrightarrow {AD} - \overrightarrow {AB} } \right)\)
\( = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{3}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right).\)
Cho hàm số \(y = f(x)\) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng:
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Tập hợp tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có ba nghiệm thực phân biệt.
Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ { - 1;5} \right]\) và có đồ thị trên đoạn \(\left[ { - 1;5} \right]\) như hình vẽ bên dưới.
Tích giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ { - 1;5} \right]\) bằng:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
a) Khảo sát và vẽ đồ thị hàm số \(\left( C \right)\) với \(m = - 4.\)
b) Với \(m = 2\), tính giá trị lớn nhất, giá trị nhỏ nhất của \(\left( C \right)\) trên đoạn \(\left[ {2;3} \right]\).