PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:
a) Hàm số đã cho đồng biến trên \(\left( { - 1;\, + \infty } \right)\).
b) Hàm số đã cho đạt cực đại tại \(x = 0\); đạt cực tiểu tại \(x = 1\).
c) Giá trị nhỏ nhất của hàm số đã cho bằng \( - 2\).
d) Phương trình \(f\left( x \right) = - \frac{3}{2}\) có 1 nghiệm.
Hướng dẫn giải
Quan sát bảng biến thiên, ta thấy:
– Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {1;\, + \infty } \right)\). Do đó, ý a) sai.
– Hàm số đã cho đạt cực đại tại \(x = 0\); đạt cực tiểu tại \(x = 1\). Do đó, ý b) đúng.
– Ta có \( - 2 < f\left( x \right)\) nhưng không tồn tại giá trị của \(x\) để \(f\left( x \right) = - 2\) nên hàm số đã cho không có giá trị nhỏ nhất, vậy ý c) sai.
– Vì \( - 2 < - \frac{3}{2} < - 1\) nên từ bảng biến thiên, ta thấy đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 1 điểm. Do đó, phương trình \(f\left( x \right) = - \frac{3}{2}\) có duy nhất 1 nghiệm. Vậy ý d) đúng.
Cho hình hộp \(ABCD.A'B'C'D'\) có tất cả các cạnh đều bằng \(a\) và \(\widehat {ABC} = \widehat {A'AB} = \widehat {A'AD} = 60^\circ \). Khi đó:
a) \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right| = a\).
b) \(\overrightarrow {AA'} \cdot \overrightarrow {AB} = {a^2}\).
c) \(\left| {\overrightarrow {D'A'} + \overrightarrow {D'C'} } \right| = a\sqrt 3 \).
d) \(\overrightarrow {AA'} \cdot \overrightarrow {AC} = {a^2}\).
Cho hình hộp \(ABCD.A'B'C'D'\).
Tổng \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \) bằng vectơ nào sau đây?
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.
Phát biểu nào sau đây là đúng?
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ dưới đây.
Khẳng định nào sau đây là đúng?
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Câu 1. Hàm số đã cho đồng biến trên khoảng nào trong các khoảng dưới đây?
Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 1;\,3} \right]\) và có đồ thị như hình dưới đây.
Phát biểu nào sau đây là đúng?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.
Tâm đối xứng của đồ thị hàm số có tọa độ là
Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 4x + 7}}{{x + 1}}\).
a) Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - 3; - 1} \right)\) và \(\left( { - 1;1} \right)\).
b) Giá trị cực tiểu của hàm số đã cho là \( - 2\).
c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận xiên là đường thẳng \(y = x + 3\).
d) Đồ thị hàm số \(y = f\left( x \right)\) đi qua 6 điểm có tọa độ nguyên.