IMG-LOGO

Câu hỏi:

26/10/2024 5

Để thiết kế một chiếc bể cá hình hộp chữ nhật có chiều cao là 60 cm, thể tích là 96 000 cm3, người thợ dùng loại kính để sử dụng làm mặt bên có giá thành 70 000 đồng/m2 và loại kính để làm mặt đáy có giá thành là 100 000 đồng/m2. Chi phí thấp nhất để hoàn thành bể cá là bao nhiêu nghìn đồng?

Trả lời:

verified Giải bởi Vietjack

Diện tích của đáy bể là: \(S = \frac{V}{h} = \frac{{96\,\,000}}{{60}} = 1\,600\) cm2 \( = 0,16\) m2.

Gọi chiều dài đáy của bể là \(x\) (m, \(x > 0\)).

Chiều rộng đáy của bể là \(\frac{{0,16}}{x}\) (m).

Chi phí để hoàn thành bể cá là:

\(F\left( x \right) = 0,16 \cdot 100\,000 + 2 \cdot 0,6 \cdot x \cdot 70\,000 + 2 \cdot 0,6 \cdot \frac{{0,16}}{x} \cdot 70\,000\)

\( = 16\,000 + 84\,000x + \frac{{13\,440}}{x}\)(đồng).

Xét hàm số \(F\left( x \right) = 16\,000 + 84\,000x + \frac{{13\,440}}{x}\) với \(x \in \left( {0;\, + \infty } \right)\).

Ta có: \(F'\left( x \right) = 84\,000 - \frac{{13\,440}}{{{x^2}}}\). Trên khoảng \(\left( {0; + \infty } \right)\), \(F'\left( x \right) = 0 \Leftrightarrow x = 0,4\).

Bảng biến thiên của hàm số \(F\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:

Để thiết kế một chiếc bể cá hình hộp chữ nhật (ảnh 1)

Căn cứ vào bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} F\left( x \right) = F\left( {0,4} \right) = 83\,200\).

Vậy chi phí thấp nhất để hoàn thành bể cá là \(83\,200\) đồng = \(83,2\) nghìn đồng.

Đáp số: \(83,2\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \(S.ABC\)\(\overrightarrow {SA}  = \overrightarrow a ,\,\,\overrightarrow {SB}  = \overrightarrow b ,\,\overrightarrow {SC}  = \overrightarrow c \) và các điểm \(M,\,N\) lần lượt là trung điểm của các cạnh \(AB,\,SC\). Các điểm \(P,\,Q\) nằm trên các đường thẳng \(SA,\,BN\) sao cho \(PQ\,{\rm{//}}\,CM\). Khi biểu diễn vectơ \(\overrightarrow {PQ} \) theo ba vectơ \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \), ta được: \(\overrightarrow {PQ}  =  - \frac{m}{n}\overrightarrow a  - \frac{p}{q}\overrightarrow b  + \frac{r}{z}\overrightarrow c \) (với \(\frac{m}{n},\,\frac{p}{q},\,\frac{r}{z}\) là các phân số tối giản và \(m,n,p,q,r,z \in \mathbb{Z}\)). Giá trị của biểu thức \(\frac{m}{n} + \frac{p}{q} + \frac{r}{z}\) bằng bao nhiêu (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 26/10/2024 9

Câu 2:

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau: 

Câu 1. Hàm số đã cho đồng biến trên khoảng nào trong các khoảng dưới đây?

Xem đáp án » 26/10/2024 7

Câu 3:

Cho hình hộp \(ABCD.A'B'C'D'\).

Tổng \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} \) bằng vectơ nào sau đây?

Xem đáp án » 26/10/2024 7

Câu 4:

Cho hàm số \(y = x - \frac{1}{x}\). Phát biểu nào sau đây là sai?

Xem đáp án » 26/10/2024 7

Câu 5:

Cho hai vectơ \(\overrightarrow a ,\,\,\overrightarrow b \) thỏa mãn: \(\left| {\overrightarrow a } \right| = 4;\,\,\left| {\overrightarrow b } \right| = 3;\,\,\left| {\overrightarrow a  - \overrightarrow b } \right| = 4\). Gọi \(\alpha \) là góc giữa hai vectơ \(\overrightarrow a ,\,\,\overrightarrow b \). Chọn khẳng định đúng trong các khẳng định sau.

Xem đáp án » 26/10/2024 7

Câu 6:

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:

a) Hàm số đã cho đồng biến trên \(\left( { - 1;\, + \infty } \right)\).

b) Hàm số đã cho đạt cực đại tại \(x = 0\); đạt cực tiểu tại \(x = 1\).

c) Giá trị nhỏ nhất của hàm số đã cho bằng \( - 2\).

d) Phương trình \(f\left( x \right) =  - \frac{3}{2}\) có 1 nghiệm.

Xem đáp án » 26/10/2024 7

Câu 7:

Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 4x + 7}}{{x + 1}}\).

a) Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - 3; - 1} \right)\)\(\left( { - 1;1} \right)\).

b) Giá trị cực tiểu của hàm số đã cho là \( - 2\).

c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x =  - 1\), tiệm cận xiên là đường thẳng \(y = x + 3\).

d) Đồ thị hàm số \(y = f\left( x \right)\) đi qua 6 điểm có tọa độ nguyên.

Xem đáp án » 26/10/2024 7

Câu 8:

Cho hình hộp \(ABCD.A'B'C'D'\) có tất cả các cạnh đều bằng \(a\)\(\widehat {ABC} = \widehat {A'AB} = \widehat {A'AD} = 60^\circ \). Khi đó:  

a) \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right| = a\).

b) \(\overrightarrow {AA'}  \cdot \overrightarrow {AB}  = {a^2}\).

c) \(\left| {\overrightarrow {D'A'}  + \overrightarrow {D'C'} } \right| = a\sqrt 3 \).

d) \(\overrightarrow {AA'}  \cdot \overrightarrow {AC}  = {a^2}\).

Xem đáp án » 26/10/2024 7

Câu 9:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau: 

Giá trị cực tiểu của hàm số đã cho là

Xem đáp án » 26/10/2024 6

Câu 10:

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 1;\,3} \right]\) và có đồ thị như hình dưới đây.

 

Phát biểu nào sau đây là đúng?

Xem đáp án » 26/10/2024 6

Câu 11:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.

Phát biểu nào sau đây là đúng?

Xem đáp án » 26/10/2024 6

Câu 12:

Tiệm cận xiên của đồ thị hàm số \(y = x + 4 - \frac{{10}}{{x + 2}}\) là đường thẳng

Xem đáp án » 26/10/2024 6

Câu 13:

Giá trị nhỏ nhất của hàm số \[y = \frac{{{x^2} + 3}}{{x - 1}}\] trên đoạn \(\left[ {2;\,\,4} \right]\) bằng

Xem đáp án » 26/10/2024 6

Câu 14:

Đường cong trong hình dưới là đồ thị của hàm số nào trong bốn hàm số sau đây?

Xem đáp án » 26/10/2024 6

Câu 15:

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ dưới đây.

Khẳng định nào sau đây là đúng?

Xem đáp án » 26/10/2024 6