A. Hàm số đạt cực đại tại \[x = 2\] và đạt cực tiểu tại \[x = 0\].
B. Hàm số đạt cực tiểu tại \[x = 2\] và đạt cực đại tại \[x = 0\].
C. Hàm số đạt cực đại tại \[x = - 2\] và cực tiểu tại \[x = 0\].
D. Hàm số đạt cực đại tại \[x = 0\] và cực tiểu tại \[x = - 2\].
Đáp án đúng là: B
Ta có: \[y = {x^3}--3{x^2} + 2\] \( \Rightarrow \) \(y' = 3{x^2} - 6x\).
\(y' = 0\)\( \Leftrightarrow \)\(3{x^2} - 6x = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 0\end{array} \right.\).
Ta có bảng biến thiên như sau:
Vậy hàm số đạt cực tiểu tại \(x = 2\) và đạt cực đại tại \(x = 0\).
Trong không gian \[Oxyz\], cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right)\), \(\overrightarrow b = \left( {1;1; - 1} \right)\).
Tính \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\). (0,5 điểm)
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa và các suối nước đổ về hồ. Từ lúc 8 giờ sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian \(t\) (giờ) trong ngày cho bởi công thức:
\(h(t) = - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right)\).
Biết rằng phải thông báo cho các hộ dân phải di dời đi trước khi xả nước theo quy định trước 5 giờ. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước mấy giờ? Biết rằng mực nước trong hồ phải đi lên cao nhất mới xả nước. (1,0 điểm)
Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 2;3} \right]\) có đồ thị như hình vẽ dưới đây:
Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;3} \right]\). Giá trị của \(2m - 3M\) bằng:
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Mệnh đề nào sau đây là sai?