Đáp án đúng là: B
Ta có: \(y = 3{x^4} - 6{x^2} + 1\) \( \Rightarrow y' = 12{x^3} - 12x\).
\(y' = 0 \Leftrightarrow 12{x^3} - 12x = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1.\end{array} \right.\)
Ta có bảng biến thiên như sau:
Quan sát bảng biến thiên, ta thấy:
Hàm số đạt cực đại tại \(x = 0\) và
Hàm số đạt cực tiểu tại \(x = \pm 1\) và \({y_{CT}} = - 2.\)
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\).
Mệnh đề nào sau đây là sai?
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ:
Đồ thị hàm số đã cho có đường tiệm cận đứng là đường thẳng: