Một cây tre cao 9 m bị gió bão làm gãy ngang thân, tạo thành một góc \(32^\circ \).
Hỏi điểm gãy \[A\] cách gốc \[B\] bao nhiêu mét?
A. \[A\] m.
B. \[5\] m.
C. \[6\] m.
D. \[7\] m.
Đáp án đúng là: B
Ta mô hình hóa bài toán như hình vẽ bên.
Khoảng cách từ gốc cây đến điểm bị gãy là \[AB.\]
Khoảng cách từ điểm thân tre bị gãy đến ngọn cây là \[BC.\]
Khoảng cách từ ngọn cây chạm đất đến gốc là \[AC.\]
Đặt độ dài \(BC = x{\rm{\;(m)}}\,\,\left( {0 < x < 9} \right)\).
Suy ra: \(AB = 9 - x.\)
Xét \(\Delta ABC\) vuông tại \(A\) ta có: \(AB = BC \cdot \cos B\)
Suy ra \(9 - x = x \cdot \cos 32^\circ \)
\(9 - x \approx 0,85x\)
\(1,85x \approx 9\)
\[x \approx 4,9{\rm{\;(m)}}{\rm{.}}\]
Do đó điểm gãy cách gốc khoảng 4,9 m.
Vậy ta chọn phương án B.
Cho tam giác \[ABC\] vuông tại \[A\] có \[BC = 8{\rm{\;cm}},\,\,AC = 6{\rm{\;cm}}.\] Kết quả nào sau đây là đúng?
Cho tam giác \[ABC\] vuông tại \[A\] có \[AB = 5{\rm{\;cm}},\,\,\cos B = \frac{5}{8}.\] Kết quả nào sau đây là đúng?
Tam giác \[ABC\] vuông tại \[A\] ở hình bên mô tả cột cờ \[AB\] và bóng nắng của cột cờ trên mặt đất \[AC.\]
Người ta đo được độ dài \[AC = 12{\rm{\;m}}\] và \[\widehat C = 40^\circ .\] Chiều cao \[AB\] của cột cờ khi làm tròn đến hàng phần trăm là
II. Thông hiểu
Cho tam giác \[ABC\] vuông tại \[A\] có \[AB = 6{\rm{\;cm}},\,\,AC = 8{\rm{\;cm}}.\] Khẳng định nào sau đây sai?
Cho góc nhọn \(\alpha \) thỏa mãn \(0^\circ < \alpha < 70^\circ \) và biểu thức:
\[A = \tan \alpha \cdot \tan \left( {\alpha + 10^\circ } \right) \cdot \tan \left( {\alpha + 20^\circ } \right) \cdot \tan \left( {70^\circ - \alpha } \right) \cdot \tan \left( {80^\circ - \alpha } \right) \cdot \tan \left( {90^\circ - \alpha } \right)\].
Giá trị của biểu thức \(A\) là
Sử dụng máy tính cầm tay, tính giá trị của biểu thức \[M = \sin 35^\circ 12' + \cot 20^\circ 25'\] rồi làm tròn kết quả đến hàng phần trăm ta được
III. Vận dụng
Cho tam giác \[ABC\] vuông tại \[A\] có \[AH\] là đường cao. Biết \[AB = 10\] cm, \[BH = 5\] cm. Tỉ số lượng giác \[\cos C\] bằng
I. Nhận biết
Cho tam giác \[DEF\] vuông tại \[E\] có góc nhọn \[F\] bằng \[\alpha .\] Khi đó \[\sin \alpha \] bằng
Nếu tam giác \[MNP\] vuông tại \[M\] có \[NP = 7,\,\,\sin P = \frac{2}{9}\] thì \[MN\] bằng
Cho \[\alpha ,\,\,\beta \] là số đo các góc nhọn của một tam giác vuông. Khẳng định nào sau đây là đúng?
Cho \[\alpha \] là góc nhọn thỏa mãn \[\tan \alpha = \frac{1}{6}.\] Khi đó \[\cot \alpha \] bằng