Với \(m = 1\), hệ phương trình \(\left\{ \begin{array}{l}mx + y = 0\\x - 3y = 4\end{array} \right.\) nhận cặp số nào là nghiệm ?
A. \(\left( { - 1;1} \right).\)
B. \(\left( { - 2;2} \right).\)
C. \(\left( {1; - 1} \right).\)
D. \(\left( { - 3;3} \right).\)
Đáp án đúng là: C
Khi \(m = 1\), hệ phương trình đã cho trở thành \(\left\{ \begin{array}{l}x + y = 0\\x - 3y = 4\end{array} \right.\)
Cặp số \(\left( { - 1;1} \right)\) không là nghiệm của hệ phương trình vì \(\left\{ {\begin{array}{*{20}{c}}{ - 1 + 1 = 0}\\{ - 1 - 3.1 = - 4 \ne 4}\end{array}.} \right.\)
Cặp số \(\left( { - 2;2} \right)\) không là nghiệm của hệ phương trình vì \(\left\{ {\begin{array}{*{20}{c}}{ - 2 + 2 = 0}\\{ - 2 - 3.2 = - 8 \ne 4}\end{array}.} \right.\)
Cặp số \(\left( {1; - 1} \right)\) là nghiệm của hệ phương trình vì \(\left\{ {\begin{array}{*{20}{c}}{1 + \left( { - 1} \right) = 0}\\{1 - 3.\left( { - 1} \right) = 4}\end{array}.} \right.\)
Cặp số \(\left( { - 3;3} \right)\) không là nghiệm của hệ phương trình vì \(\left\{ {\begin{array}{*{20}{c}}{ - 3 + 3 = 0}\\{ - 3 - 3.3 = - 12 \ne 4}\end{array}.} \right.\)
Vậy với \(m = 1\), hệ phương trình \(\left\{ \begin{array}{l}mx + y = 0\\x - 3y = 4\end{array} \right.\) nhận cặp số \(\left( {1; - 1} \right)\) là nghiệm.
Cho hệ phương trình sau: \(\left\{ {\begin{array}{*{20}{c}}{mx - y = 0}\\{x - \left( {m + 1} \right)y = 2m + 1}\end{array}} \right.\)
Tìm \(m\) để hệ phương trình nhận cặp số \(\left( { - 1;2} \right)\) là nghiệm.
I. Nhận biết
Hệ số \(a\)của phương trình bậc nhất hai ẩn \( - 2x = 11\) là
Trong các hệ phương trình sau, hệ nào không phải là hệ phương trình bậc nhất hai ẩn?
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + 3y = 6}\\{ - 2x - y = - 5}\end{array},} \right.\)hệ số \(a,\,b,\,c\) và \(a',\,b',\,c'\)của hệ phương trình?
Cho hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + 3y = 6}\\{ - x - y = 0}\end{array},} \right.\) cặp số nào sau đây là nghiệm của hệ phương trình?
Tất cả các nghiệm của phương trình \(4x - 3y = - 1\) được biểu diễn bằng đường thẳng nào dưới đây?
II. Thông hiểu
Tất cả các nghiệm của phương trình \(0x - 5y = 3\) được biểu diễn bởi
Giá trị nào của \({y_0}\) để cặp số \(\left( {0,5;{y_0}} \right)\)là nghiệm của phương trình \( - 2x + 2y = 3?\)
Giá trị nào của \({x_0}\) để cặp số \(\left( {{x_0}; - 1} \right)\)là nghiệm của phương trình \(3x + y = 2?\)
Bằng cách tìm giao điểm của hai đường thẳng \(d:4x + y = - 5\) và \(d':2x - y = 1\) ta tìm được nghiệm của hệ phương trình \[\left\{ \begin{array}{l}4x + y = - 5\\2x - y = 1\end{array} \right.\] là \(\left( {{x_0};\,\,{y_0}} \right).\) Tính \({x_0}.{y_0}\)
Một lạng \(\left( {0,1\,\,{\rm{kg}}} \right)\) thịt bò chứa \(26\,{\rm{g}}\)protein, một lạng \(\left( {0,1\,\,{\rm{kg}}} \right)\) cá chứa \(23\,{\rm{g}}\)protein. Bác An định chỉ bổ sung \(65\,{\rm{g}}\) từ thịt bò và thịt cá trong một ngày. Gọi \(x,\,y\) lần lượt là số lạng thịt bò, số lạng thịt cá mà bác An ăn trong một ngày. Phương trình bậc nhất hai ẩn \(x,\,y\) biểu diễn nhu cầu bổ sung protein của bác An là
III. Vận dụng
Để chuẩn bị cho buổi liên hoan của gia đình, bác Ngọc mua hai loại thực phẩm là thịt lợn và cá chép. Giá tiền thịt lợn là \(130\) nghìn đồng/kg, giá tiền cá chép là \(50\) nghìn đồng/kg. Bác Ngọc đã chi \(295\)nghìn đồng để mua \(3,5\,{\rm{kg}}\) hai loại thực phẩm trên. Gọi \(x\) và \(y\) lần lượt là số kilogam thịt lợn và cá chép mà bác Ngọc đã mua. Hệ phương trình bậc nhất hai ẩn \(x\) và \(y\) là: