Cho \[\alpha \] là góc nhọn thỏa mãn \[\tan \alpha = \frac{1}{6}.\] Khi đó \[\cot \alpha \] bằng
A. \[\cot \alpha = \frac{1}{6}.\]
B. \[\cot \alpha = - \frac{1}{6}.\]
C. \[\cot \alpha = - 6.\]
D. \[\cot \alpha = 6.\]
Đáp án đúng là: D
Theo định nghĩa tỉ số lượng giác trong tam giác vuông, ta có \[\cot \alpha = \frac{1}{{\tan \alpha }} = 1:\frac{1}{6} = 1 \cdot 6 = 6.\]
Vậy ta chọn phương án D.
Cho góc nhọn \(\alpha \) thỏa mãn \(0^\circ < \alpha < 70^\circ \) và biểu thức:
\[A = \tan \alpha \cdot \tan \left( {\alpha + 10^\circ } \right) \cdot \tan \left( {\alpha + 20^\circ } \right) \cdot \tan \left( {70^\circ - \alpha } \right) \cdot \tan \left( {80^\circ - \alpha } \right) \cdot \tan \left( {90^\circ - \alpha } \right)\].
Giá trị của biểu thức \(A\) là
Cho tam giác \[ABC\] vuông tại \[A\] có \[BC = 8{\rm{\;cm}},\,\,AC = 6{\rm{\;cm}}.\] Kết quả nào sau đây là đúng?
Nếu tam giác \[MNP\] vuông tại \[M\] có \[NP = 7,\,\,\sin P = \frac{2}{9}\] thì \[MN\] bằng
Cho \[\alpha ,\,\,\beta \] là số đo các góc nhọn của một tam giác vuông. Khẳng định nào sau đây là đúng?
Một cây tre cao 9 m bị gió bão làm gãy ngang thân, tạo thành một góc \(32^\circ \).
Hỏi điểm gãy \[A\] cách gốc \[B\] bao nhiêu mét?
II. Thông hiểu
Cho tam giác \[ABC\] vuông tại \[A\] có \[AB = 6{\rm{\;cm}},\,\,AC = 8{\rm{\;cm}}.\] Khẳng định nào sau đây sai?
Cho tam giác \[ABC\] vuông tại \[A\] có \[AB = 5{\rm{\;cm}},\,\,\cos B = \frac{5}{8}.\] Kết quả nào sau đây là đúng?
Tam giác \[ABC\] vuông tại \[A\] ở hình bên mô tả cột cờ \[AB\] và bóng nắng của cột cờ trên mặt đất \[AC.\]
Người ta đo được độ dài \[AC = 12{\rm{\;m}}\] và \[\widehat C = 40^\circ .\] Chiều cao \[AB\] của cột cờ khi làm tròn đến hàng phần trăm là
Sử dụng máy tính cầm tay, tính giá trị của biểu thức \[M = \sin 35^\circ 12' + \cot 20^\circ 25'\] rồi làm tròn kết quả đến hàng phần trăm ta được
Một thanh chống dài \[2,5\] m hợp với tường một góc \[40^\circ \] để chống một tấm nhựa che nắng (hình vẽ).
Hỏi khoảng cách từ tường đến vị trí đặt đầu thanh chống trên tấm nhựa là khoảng bao nhiêu mét?
III. Vận dụng
Cho tam giác \[ABC\] vuông tại \[A\] có \[AH\] là đường cao. Biết \[AB = 10\] cm, \[BH = 5\] cm. Tỉ số lượng giác \[\cos C\] bằng
Để xác định khoảng cách từ một gốc cây \[A\] trên một hòn đảo nhỏ giữa biển đến vị trí con sao biển \[C\] trên bãi cát (hình vẽ), người ta chọn một điểm \[B\] trên bãi biển cách điểm \[C\] một khoảng \[1{\rm{\;\;}}225\] m và dùng giác kế ngắm xác định được \[\widehat {ABC} = 75^\circ ;\,\,\widehat {ACB} = 65^\circ .\]
Khi đó khoảng cách \[AC\] khoảng bao nhiêu mét?
I. Nhận biết
Cho tam giác \[DEF\] vuông tại \[E\] có góc nhọn \[F\] bằng \[\alpha .\] Khi đó \[\sin \alpha \] bằng