Cho đường tròn \[\left( {O;R} \right)\] có đường kính \[AB\]. Kẻ hai dây \[AC\,{\rm{//}}\,BD.\] Kết luận nào sau đây đúng?
A. \[AC = BD.\]
Đáp án đúng là: A
Qua \[O\] kẻ đường thẳng vuông góc với \[AC\] tại \[E,\] cắt \[BD\] tại \[F.\]
Suy ra \[EF \bot BD\] (do \[AC\,{\rm{//}}\,BD.\]).
Tam giác \[OAC\] cân tại \[O\] (do \[OA = OC = R\]) có \[OE\] là đường cao nên \[OE\] cũng là đường trung tuyến của tam giác.
Do đó \[E\] là trung điểm \[AC\] hay \[AC = 2EA.\]
Chứng minh tương tự, ta được \[F\] là trung điểm \[BD\] hay \[BD = 2FB.\]
Xét \[\Delta OEA\] và \[\Delta OFB,\] có:
\[\widehat {AEO} = \widehat {BFO} = 90^\circ ;\] \[OA = OB = R;\] \[\widehat {AOE} = \widehat {BOF}\] (đối đỉnh)
Do đó \[\Delta OEA = \Delta OFB\] (cạnh huyền – góc nhọn)
Suy ra \[EA = FB\] (hai cạnh tương ứng). Vì vậy \[2EA = 2FB,\] hay \[AC = BD.\]
Vậy ta chọn phương án A.
II. Thông hiểu
Cho đường tròn \(\left( O \right)\) đi qua hai điểm \(A,\,\,B\). Biết \(\widehat {AOB} = 100^\circ \) thì số đo của cung lớn \(AB\) là
Cho đường tròn \[\left( {O;R} \right)\] và dây cung \[MN = R\sqrt 3 .\] Kẻ \[OI \bot MN\] tại \[I.\] Số đo cung nhỏ \[MN\] bằng
Cho tam giác \[ABC\] cân tại \[A.\] Vẽ đường tròn tâm \[O\] đường kính \[BC.\] Đường tròn \[\left( O \right)\] cắt \[AB,AC\] lần lượt tại \[I,K.\] Biết \[\widehat {BAC} = 40^\circ .\] Số đo của cung nhỏ \(IK\) bằng
I. Nhận biết
Cho đường tròn \[\left( O \right)\] đường kính \[AB\] và dây \[CD\] không đi qua tâm. Khẳng định nào sau đây là đúng?
III. Vận dụng
Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] bằng
Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).
Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét?
Cho đường tròn \[\left( O \right)\] có bán kính \[R = 5{\rm{\;cm}}.\] Khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}.\] Độ dài dây \[AB\] bằng
Cho đường tròn \[\left( {O;R} \right)\] và điểm \[A\] nằm trên đường tròn \[\left( {O;R} \right).\] Gọi \[H\] là điểm thuộc bán kính \[OA\] sao cho \[OH = \frac{{\sqrt 3 }}{2}OA.\] Dây \[CD\] vuông góc với \[OA\] tại \[H.\] Số đo cung lớn \[CD\] bằng
Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB.\] Trên cung nhỏ \[AB\] lấy hai điểm \[M,\,\,N\] sao cho \[AM = BN\] \[(M\] nằm trên cung nhỏ \[AN).\] Kết luận nào sau đây đúng?
Cho hình vẽ bên.
Số đo cung lớn
\[AB\] trong hình ngôi sao năm cánh đã cho bằng