IMG-LOGO

Câu hỏi:

31/12/2024 2

Cho lục giác đều \[ABCDEF\] tâm \(O\) biết \[OA = 4{\rm{ cm}}.\] Độ dài mỗi cạnh của lục giác đều \[ABCDEF\] là bao nhiêu?

Cho lục giác đều  A B C D E F  tâm  O  biết  O A = 4 c m .  Độ dài mỗi cạnh của lục giác đều  A B C D E F  là bao nhiêu? (ảnh 1)

A. \[8{\rm{ cm}}.\]

B. \[5{\rm{ cm}}.\]

C. \[4{\rm{ cm}}.\]

Đáp án chính xác

D. \[2{\rm{ cm}}.\]

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Tổng 6 góc của lục giác đều \[ABCDEF\] bằng tổng các góc trong hai tứ giác \[ABCD\] và \[ABEF.\]

Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ = 720^\circ .\]

Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ .\]

Ta có \[AF = AB\] (vì \[ABCDEF\] là lục giác đều) và \[OB = OF\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]

Suy ra \[AO\] là đường trung trực của đoạn BF.

Vì \[AF = AB\] (chứng minh trên) nên tam giác \[ABF\] cân tại \[A.\]

Do đó \[AO\] vừa là đường trung trực, vừa là đường phân giác của tam giác \[ABF.\]

Vì vậy \[\widehat {OAB} = \frac{{\widehat {BAF}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]

Ta có \[OB = OA = 4{\rm{ cm}}\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]

Suy ra tam giác \[OAB\] cân tại O, mà \[\widehat {OAB} = 60^\circ \] (chứng minh trên).

Do đó tam giác \[OAB\] đều, suy ra \[AB = OB = OA = 4{\rm{ cm}}.\]

Vì vậy \[BC = CD = DE = EF = FA = AB = 4{\rm{ cm}}\] (vì \[ABCDEF\] là lục giác đều).

Vậy số đo mỗi cạnh của lục giác đều \[ABCDEF\] đều bằng nhau và bằng \[4{\rm{ cm}}.\]

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác \[ABCD\] nội tiếp một đường tròn \[\left( O \right)\]. Biết \(\widehat {BOD} = 140^\circ \). Số đo góc \(\widehat {BCD}\) là

Xem đáp án » 31/12/2024 2

Câu 2:

I. Nhận biết

Đa giác đều trong các hình dưới đây là

Đa giác đều trong các hình dưới đây là (ảnh 1)

Xem đáp án » 31/12/2024 1

Câu 3:

Khẳng định nào sau đây là sai?

Xem đáp án » 31/12/2024 1

Câu 4:

Đường tròn ngoại tiếp đa giác là đường tròn

Xem đáp án » 31/12/2024 1

Câu 5:

Trong các hình sau, hình nội tiếp được trong đường tròn là:

Xem đáp án » 31/12/2024 1

Câu 6:

Trong các hình sau, hình đang nội tiếp đường tròn là

Xem đáp án » 31/12/2024 1

Câu 7:

II. Thông hiểu

Phép quay với \[O\] là tâm biến tam giác đều thành chính nó là phép quay thuận chiều một góc:

Xem đáp án » 31/12/2024 1

Câu 8:

Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng

Xem đáp án » 31/12/2024 1

Câu 9:

Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng

Xem đáp án » 31/12/2024 1

Câu 10:

Cho đường tròn \[\left( O \right)\]. Trên \[\left( O \right)\] lấy ba điểm \[A,{\rm{ }}B,{\rm{ }}D\] sao cho \(\widehat {AOB} = 120^\circ \), \[AD = BD\]. Khi đó tam giác \[ABD\] là

Xem đáp án » 31/12/2024 1

Câu 11:

Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Gọi \[N\] là giao điểm của \[AH\] với đường tròn \[\left( O \right)\]. Tứ giác \[BCMN\] là

Xem đáp án » 31/12/2024 1

Câu 12:

Cho tam giác \[ABC\] nhọn nội tiếp \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\]. Khẳng định nào sau đây là đúng?

Xem đáp án » 31/12/2024 1

Câu 13:

III. Vận dụng

Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là

Xem đáp án » 31/12/2024 1

Câu 14:

Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó?

Xem đáp án » 31/12/2024 1

Câu hỏi mới nhất

Xem thêm »
Xem thêm »