15 câu trắc nghiệm Toán 9 Kết nối tri thức Ôn tập chương IX có đáp án
-
27 lượt thi
-
15 câu hỏi
-
60 phút
Danh sách câu hỏi
Câu 1:
I. Nhận biết
Đa giác đều trong các hình dưới đây là
Đáp án đúng là: D
Hình d là đa giác lồi có các góc bằng nhau và các cạnh bằng nhau nên là đa giác đều.
Câu 2:
Khẳng định nào sau đây là sai?
Đáp án đúng là: D
Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
Câu 3:
Đường tròn ngoại tiếp đa giác là đường tròn
Đáp án đúng là: B
Đường tròn ngoại tiếp đa giác là đường tròn đi qua tất cả các đỉnh của đa giác đó.
Câu 4:
Trong các hình sau, hình nội tiếp được trong đường tròn là:
Đáp án đúng là: C
Hình thoi và hình vuông có đường chéo cắt nhau tại trung điểm mỗi đường nên nội tiếp đường tròn có tâm là giao điểm hai đường chéo và bán kính bằng nửa đường chéo.
Câu 5:
Trong các hình sau, hình đang nội tiếp đường tròn là
Đáp án đúng là: A
Ta thấy trên hình 1, các điểm \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D\] đều nằm trên đường tròn \[\left( O \right)\] nên tứ giác \[ABCD\] trên hình 1 là tứ giác nội tiếp.
Câu 6:
II. Thông hiểu
Phép quay với \[O\] là tâm biến tam giác đều thành chính nó là phép quay thuận chiều một góc:
Đáp án đúng là: D
Phép quay thuận chiều tâm một góc \(0^\circ ;\,\,120^\circ ;\,\,240^\circ ;\,\,360^\circ \) biến tam giác đều thành chính nó.
Câu 7:
Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng
Đáp án đúng là: A
Tứ giác \[MNPQ\] nội tiếp đường tròn nên \(\widehat M + \widehat P = 180^\circ \) hay \(\widehat P = 180^\circ - \widehat M = 180^\circ - 90^\circ = 90^\circ \).
Câu 8:
Tam giác đều \[ABC\] nội tiếp đường tròn. Khi đó góc \[AOB\] bằng
Đáp án đúng là: A
Góc \[AOB\] và \[ACB\] lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung \[AB\] của đường tròn \[\left( O \right)\] nên \(\widehat {AOB} = 2\widehat {ACB} = 2 \cdot 60^\circ = 120^\circ \).
Câu 9:
Cho đường tròn \[\left( O \right)\]. Trên \[\left( O \right)\] lấy ba điểm \[A,{\rm{ }}B,{\rm{ }}D\] sao cho \(\widehat {AOB} = 120^\circ \), \[AD = BD\]. Khi đó tam giác \[ABD\] là
Đáp án đúng là: A
Vì \[\widehat {AOB}\] và \[\widehat {ADB}\] lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung \[AB\] của \[\left( O \right)\].
Do đó \(\widehat {ADB} = \frac{1}{2}\widehat {AOB} = \frac{1}{2} \cdot 120^\circ = 60^\circ \).
Mà tam giác \[ADB\] cân tại D do \[AD = BD\] nên tam giác \[ADB\] là tam giác đều.
Câu 10:
Cho tứ giác \[ABCD\] nội tiếp một đường tròn \[\left( O \right)\]. Biết \(\widehat {BOD} = 140^\circ \). Số đo góc \(\widehat {BCD}\) là
Đáp án đúng là: A
Góc \[BAD\] và \[BOD\] là góc nội tiếp và góc ở tâm cùng chắn cung \[BD\] của \[\left( O \right)\].
Do đó \(\widehat {BAD} = \frac{1}{2}\widehat {BOD} = \frac{1}{2}.140^\circ = 70^\circ \).
Tứ giác \[ABCD\] là tứ giác nội tiếp nên \(\widehat {BAD} + \widehat {BCD} = 180^\circ \).
Vậy \(\widehat {BCD} = 180^\circ - \widehat {BAD} = 180^\circ - 70^\circ = 110^\circ \).
Câu 11:
Cho tam giác \[ABC\] có ba góc nhọn, đường cao \[AH\] và nội tiếp đường tròn tâm \[\left( O \right)\], đường kính \[AM\]. Gọi \[N\] là giao điểm của \[AH\] với đường tròn \[\left( O \right)\]. Tứ giác \[BCMN\] là
Đáp án đúng là: C
Góc \[ACM\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {ACM} = 90^\circ \).
Xét hai tam giác \(ABH\) và \[AMC\] có:
\(\widehat {AHB} = \widehat {ACM} = 90^\circ \)
\(\widehat {ABH} = \widehat {AMC}\) (hai góc nội tiếp cùng chắn cung \[AC\] của \[\left( O \right)\])
Nên (g.g)
Suy ra \(\widehat {BAH} = \widehat {OAC};\widehat {OCA} = \widehat {OAC}\).
Do đó \(\widehat {BAH} = \widehat {OCA}\).
Góc \[ANM\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {ANM} = 90^\circ \).
Suy ra \[MNBC\] là hình thang, suy ra \[BC\,{\rm{//}}\,MN\] và \(\widehat {CBN} = \widehat {BCM}\).
Vậy \[BCMN\] là hình thang cân.
Câu 12:
Cho tam giác \[ABC\] nhọn nội tiếp \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\]. Khẳng định nào sau đây là đúng?
Đáp án đúng là: B
Tam giác \(BEH\) vuông tại \(E\) nên \(BH > BE\). Do đó khẳng định A sai.
Xét \[\left( O \right)\] có \(\widehat {ACF} = 90^\circ \); \(\widehat {ABF} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Suy ra \[CF \bot AC;{\rm{ }}BF\; \bot \;AB\] mà \[BD\; \bot \;AC;{\rm{ }}CE\; \bot \;AB\]
Suy ra \[BD\,{\rm{//}}\,CF;{\rm{ }}CE\,{\rm{//}}\,BF\].
Do đó \[BHCF\] là hình bình hành.
Suy ra \[BH = CF\]. Do đó khẳng định B đúng.
Câu 13:
III. Vận dụng
Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là
Đáp án đúng là: B
Tứ giác \[ABCD\] nội tiếp nên ta có:
\(\widehat {DAB} + \widehat {BCD} = 180^\circ \) nên \(\widehat {BCD} = 180^\circ - 70^\circ = 110^\circ \).
Mà \(\widehat {BCD} + \widehat {BCM} = 180^\circ \) (hai góc kề bù)
Do đó \(\widehat {BCM} = 180^\circ - 110^\circ = 70^\circ \).
Vậy \(\widehat {BCM} = 70^\circ \).
Câu 14:
Cho lục giác đều \[ABCDEF\] tâm \(O\) biết \[OA = 4{\rm{ cm}}.\] Độ dài mỗi cạnh của lục giác đều \[ABCDEF\] là bao nhiêu?
Đáp án đúng là: C
Tổng 6 góc của lục giác đều \[ABCDEF\] bằng tổng các góc trong hai tứ giác \[ABCD\] và \[ABEF.\]
Suy ra tổng 6 góc của lục giác đều \[ABCDEF\] bằng \[2 \cdot 360^\circ = 720^\circ .\]
Do tất cả các góc của lục giác đều bằng nhau nên số đo mỗi góc của lục giác đều bằng \[\frac{{720^\circ }}{6} = 120^\circ .\]
Ta có \[AF = AB\] (vì \[ABCDEF\] là lục giác đều) và \[OB = OF\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]
Suy ra \[AO\] là đường trung trực của đoạn BF.
Vì \[AF = AB\] (chứng minh trên) nên tam giác \[ABF\] cân tại \[A.\]
Do đó \[AO\] vừa là đường trung trực, vừa là đường phân giác của tam giác \[ABF.\]
Vì vậy \[\widehat {OAB} = \frac{{\widehat {BAF}}}{2} = \frac{{120^\circ }}{2} = 60^\circ .\]
Ta có \[OB = OA = 4{\rm{ cm}}\] (vì \[O\] là tâm của lục giác đều \[ABCDEF).\]
Suy ra tam giác \[OAB\] cân tại O, mà \[\widehat {OAB} = 60^\circ \] (chứng minh trên).
Do đó tam giác \[OAB\] đều, suy ra \[AB = OB = OA = 4{\rm{ cm}}.\]
Vì vậy \[BC = CD = DE = EF = FA = AB = 4{\rm{ cm}}\] (vì \[ABCDEF\] là lục giác đều).
Vậy số đo mỗi cạnh của lục giác đều \[ABCDEF\] đều bằng nhau và bằng \[4{\rm{ cm}}.\]
Câu 15:
Cho ngũ giác đều \[MNPQR\] có tâm \[O.\] Phép quay nào với tâm \[O\] biến ngũ giác đều \[MNPQR\] thành chính nó?
Đáp án đúng là: B
Các phép quay giữ nguyên ngũ giác đều \[MNPQR\] là:
⦁ Năm phép quay thuận chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \] lần lượt nhận các giá trị:
\[\alpha _1^o = \frac{{360^\circ }}{5} = 72^\circ ;\,\,\alpha _2^o = \frac{{2 \cdot 360^\circ }}{5} = 144^\circ ;\,\,\alpha _3^o = \frac{{3 \cdot 360^\circ }}{5} = 216^\circ ;\]
\[\alpha _4^o = \frac{{4 \cdot 360^\circ }}{5} = 288^\circ ;\,\,\alpha _5^o = \frac{{5 \cdot 360^\circ }}{5} = 360^\circ .\]
⦁ Ba phép quay ngược chiều \[\alpha ^\circ \] tâm \[O\] với \[\alpha ^\circ \] lần lượt nhận các giá trị:
\[\alpha _1^o = \frac{{360^\circ }}{5} = 72^\circ ;\,\,\alpha _2^o = \frac{{2 \cdot 360^\circ }}{5} = 144^\circ ;\,\,\alpha _3^o = \frac{{3 \cdot 360^\circ }}{5} = 216^\circ ;\]
\[\alpha _4^o = \frac{{4 \cdot 360^\circ }}{5} = 288^\circ ;\,\,\alpha _5^o = \frac{{5 \cdot 360^\circ }}{5} = 360^\circ .\]
Do đó ta chọn phương án B.