Thứ năm, 09/01/2025
IMG-LOGO
Trang chủ Lớp 9 Toán 15 câu trắc nghiệm Toán 9 Cánh diều Bài 2. Vị trí tương đối của đường thẳng và đường tròn có đáp án

15 câu trắc nghiệm Toán 9 Cánh diều Bài 2. Vị trí tương đối của đường thẳng và đường tròn có đáp án

15 câu trắc nghiệm Toán 9 Cánh diều Bài 2. Vị trí tương đối của đường thẳng và đường tròn có đáp án

  • 34 lượt thi

  • 15 câu hỏi

  • 60 phút

Danh sách câu hỏi

Câu 1:

I. Nhận biết

Đường thẳng và đường tròn có nhiều nhất bao nhiêu điểm chung?

Xem đáp án

Đáp án đúng là: B

Đường thẳng và đường tròn có nhiều nhất 2 điểm chung.

Vậy ta chọn phương án B.


Câu 2:

Nếu đường thẳng và đường tròn có duy nhất một điểm chung thì

Xem đáp án

Đáp án đúng là: A

Đường thẳng và đường tròn gọi là tiếp xúc với nhau nếu chúng có duy nhất một điểm chung.

Do đó ta chọn phương án A.


Câu 3:

Cho đường tròn \[\left( O \right)\] và đường thẳng \[a.\] Kẻ \[OH \bot a\] tại điểm \[H,\] biết \[OH > R.\] Khi đó, đường thẳng \[a\] và đường tròn \[\left( O \right)\] có vị trí tương đối là

Xem đáp án

Đáp án đúng là: C

Cho đường tròn  ( O )  và đường thẳng  a .  Kẻ  O H ⊥ a  tại điểm  H ,  biết  O H > R .  Khi đó, đường thẳng  a  và đường tròn  ( O )  có vị trí tương đối là (ảnh 1)

Vì \[OH > R\] nên đường thẳng \[a\] và đường tròn \[\left( O \right)\] không cắt nhau.

Vậy ta chọn phương án C.


Câu 4:

Cho đường tròn \[\left( O \right)\] và đường thẳng \[a.\] Kẻ \[OH \bot a\] tại điểm \[H,\] biết \[OH < R.\] Khi đó, đường thẳng \[a\] và đường tròn \[\left( O \right)\]

Xem đáp án

Đáp án đúng là: B

Cho đường tròn  ( O )  và đường thẳng  a .  Kẻ  O H ⊥ a  tại điểm  H ,  biết  O H < R .  Khi đó, đường thẳng  a  và đường tròn  ( O ) (ảnh 1)

Vì \[OH < R\] nên đường thẳng \[a\] và đường tròn \[\left( O \right)\] cắt nhau.

Vậy ta chọn phương án B.


Câu 5:

Cho đường tròn \[\left( O \right)\] và đường thẳng \[a.\] Kẻ \[OH \bot a\] tại điểm \[H,\] biết \[OH = R.\] Khi đó, đường thẳng \[a\] và đường tròn \[\left( O \right)\]

Xem đáp án

Đáp án đúng là: A

Cho đường tròn  ( O )  và đường thẳng  a .  Kẻ  O H ⊥ a  tại điểm  H ,  biết  O H = R .  Khi đó, đường thẳng  a  và đường tròn  ( O ) (ảnh 1)

Vì \[OH = R\] nên đường thẳng \[a\] và đường tròn \[\left( O \right)\] tiếp xúc với nhau. Khi đó \[H\] được gọi là tiếp điểm và đường thẳng \[a\] còn gọi là tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H.\]

Vậy ta chọn phương án A.


Câu 6:

II. Thông hiểu

Cho \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[3{\rm{\;cm}}.\] Lấy điểm \[I\] trên \[a\] và vẽ đường tròn \[\left( {I;3,5{\rm{\;cm}}} \right).\] Khi đó đường tròn \[\left( I \right)\] với đường thẳng \[b\]

Xem đáp án

Đáp án đúng là: A

Cho  a  và  b  là hai đường thẳng song song và cách nhau một khoảng bằng  3 c m .  Lấy điểm  I  trên  a  và vẽ đường tròn  ( I ; 3 , 5 c m ) .  Khi đó đường tròn  ( I )  với đường thẳng  b (ảnh 1)

Kẻ \[IH \bot b\] tại \[H.\]

Vì \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[3{\rm{\;cm}}\] và \[I \in a\] nên khoảng cách từ tâm \[I\] đến đường thẳng \[b\] là \[IH = 3{\rm{\;(cm)}}{\rm{.}}\]

Do \[IH = 3{\rm{\;cm}} < R = 3,5{\rm{\;cm}}\] nên đường tròn \[\left( I \right)\] với đường thẳng \[b\] cắt nhau.

Vậy ta chọn phương án A.


Câu 7:

Cho \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[2,5{\rm{\;cm}}.\] Lấy điểm \[I\] trên \[a\] và vẽ đường tròn \[\left( {I;2,5{\rm{\;cm}}} \right).\] Khi đó đường tròn \[\left( I \right)\] với đường thẳng \[b\]

Xem đáp án

Đáp án đúng là: B

Cho  a  và  b  là hai đường thẳng song song và cách nhau một khoảng bằng  2 , 5 c m .  Lấy điểm  I  trên  a  và vẽ đường tròn  ( I ; 2 , 5 c m ) .  Khi đó đường tròn  ( I )  với đường thẳng  b (ảnh 1)

Kẻ \[IH \bot b\] tại \[H.\]

Vì \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[2,5{\rm{\;cm}}\] và \[I \in a\] nên khoảng cách từ tâm \[I\] đến đường thẳng \[b\] là \[IH = 2,5{\rm{\;(cm)}}{\rm{.}}\]

Do \[IH = R = 2,5{\rm{\;(cm)}}\] nên đường tròn \[\left( I \right)\] với đường thẳng \[b\] tiếp xúc nhau tại tiếp điểm \[H.\]

Vậy ta chọn phương án B.


Câu 8:

Cho bảng sau với \[R\] là bán kính của đường tròn, \[d\] là khoảng cách từ tâm đến đường thẳng:

\[R\]

\[d\]

Vị trí tương đối của đường thẳng và đường tròn

5 cm

4 cm

(1)

8 cm

(2)

Tiếp xúc nhau

Điền vào các vị trí (1), (2) trong bảng trên là

Xem đáp án

Đáp án đúng là: A

⦁ Vì \[4{\rm{\;cm}} < 5{\rm{\;cm}}\] nên \[d < R.\] Suy ra đường thẳng cắt đường tròn.

⦁ Vì đường thẳng tiếp xúc với đường tròn nên \[d = R.\] Suy ra \[d = 8{\rm{\;cm}}.\]

Do đó ở vị trí (1) ta điền “Cắt nhau”; ở vị trí (2) ta điền “8 cm”.

Vậy ta chọn phương án A.


Câu 9:

Cho đường thẳng \[d\] và một điểm \[I\] cách \[d\] một khoảng bằng 10 cm. Vẽ đường tròn \[\left( I \right)\] đường kính 18 cm. Khi đó đường thẳng \[d\] và đường tròn \[\left( I \right)\] là

Xem đáp án

Đáp án đúng là: C

Cho đường thẳng  d  và một điểm  I  cách  d  một khoảng bằng 10 cm. Vẽ đường tròn  ( I )  đường kính 18 cm. Khi đó đường thẳng  d  và đường tròn  ( I )  là (ảnh 1)

Kẻ \[IH \bot d\] tại \[H.\] Suy ra \[IH = 10{\rm{\;(cm)}}{\rm{.}}\]

Bán kính của đường tròn \[\left( I \right)\] là: \[R = \frac{{18}}{2} = 9{\rm{\;(cm)}}{\rm{.}}\]

Vì \[10{\rm{\;cm}} > 9{\rm{\;cm}}\] nên \[IH > R.\]

Do đó đường thẳng \[d\] và đường tròn \[\left( I \right)\] không giao nhau.

Vậy ta chọn phương án C.


Câu 10:

Cho đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}\] và một điểm \[A\] cách \[O\] là \[7{\rm{\;cm}}.\] Kẻ đường thẳng \[AB\] tiếp xúc với đường tròn \(\left( O \right)\) (điểm \[B\] là tiếp điểm). Khi đó độ dài \[AB\] là

Xem đáp án

Đáp án đúng là: C

Cho đường tròn tâm  O  bán kính  4 c m  và một điểm  A  cách  O  là  7 c m .  Kẻ đường thẳng  A B  tiếp xúc với đường tròn  ( O )  (điểm  B  là tiếp điểm). Khi đó độ dài  A B  là (ảnh 1)

Vì \[AB\] tiếp xúc với đường tròn \[\left( O \right),\] với \[B\] là tiếp điểm nên \[AB \bot OB\] tại \[B.\]

Áp dụng định lí Pythagore cho tam giác \[OAB\] vuông tại \[B,\] ta được: \[O{A^2} = O{B^2} + A{B^2}.\]

Suy ra \[A{B^2} = O{A^2} - O{B^2} = {7^2} - {4^2} = 33.\] Do đó \[AB = \sqrt {33} {\rm{\;(cm)}}{\rm{.}}\]

Vậy ta chọn phương án C.


Câu 11:

Cho đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và một điểm \[A\] nằm ngoài \[\left( O \right).\] Qua \[A,\] kẻ đường thẳng cắt đường tròn \[\left( O \right)\] tại hai điểm \[B\] và \[C\] (điểm \[B\] nằm giữa hai điểm \[A\] và \[C)\] sao cho \[AB = BC.\] Vẽ đường kính \[CD\] của đường tròn \[\left( O \right).\] Khi đó độ dài đoạn \[AD\] bằng

Xem đáp án

Đáp án đúng là: B

Cho đường tròn  ( O ; 5 c m )  và một điểm  A  nằm ngoài  ( O ) .  Qua  A ,  kẻ đường thẳng cắt đường tròn  ( O )  tại hai điểm  B  và  C  (điểm  B  nằm giữa hai điểm  A  và  C )  sao cho  A B = B C .  Vẽ đường kính  C D  của đường tròn  ( O ) .  Khi đó độ dài đoạn  A D  bằng (ảnh 1)

Đường tròn \[\left( O \right)\] có \[CD\] là đường kính nên tâm \[O\] là trung điểm \[CD\] hay \[OC = OD = \frac{{CD}}{2} = BO.\]

Xét tam giác \[BCD\] có \[BO\] là đường trung tuyến ứng với cạnh \(CD\) và \[BO = \frac{{CD}}{2}\] nên tam giác \[BCD\] vuông tại \[B.\]

Do đó \[BD \bot AC\] tại \[B.\] Vì \[AB = BC\] nên \[B\] là trung điểm \[AC.\]

Tam giác \[ACD\] có \[DB\] vừa là đường cao, vừa là đường trung tuyến, suy ra tam giác \[ACD\] cân tại \[D.\] Do đó \[AD = CD = 2OD = 2 \cdot 5 = 10{\rm{\;(cm)}}{\rm{.}}\]

Vậy ta chọn phương án B.


Câu 12:

Cho đường tròn \[\left( O \right),\] bán kính \[R = OA,\] dây \[CD\] là đường trung trực của \[OA.\] Kẻ đường thẳng tiếp xúc với đường tròn tại \[C,\] cắt đường thẳng \[OA\] tại \[I.\] Cho các khẳng định sau:

(i) Tứ giác \[CODA\] là hình thoi.

(ii) \[CI = R\sqrt 3 .\]

Kết luận nào sau đây đúng nhất?

Xem đáp án

Đáp án đúng là: C

Cho đường tròn  ( O ) ,  bán kính  R = O A ,  dây  C D  là đường trung trực của  O A .  Kẻ đường thẳng tiếp xúc với đường tròn tại  C ,  cắt đường thẳng  O A  tại  I .  Cho các khẳng định sau: (ảnh 1)

⦁ Gọi \[H\] là giao điểm của \[CD\] và \[OA.\]

Ta có \[CD\] là đường trung trực của \[OA.\] Suy ra \[H\] là trung điểm \[OA\] và \[CD \bot OA\] tại \[H.\]

Tam giác \[OCD\] cân tại \[O\] (vì \[OC = OD = R\]) có \[OH\] là đường cao, suy ra \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[CD.\]

Tứ giác \[CODA\] có hai đường chéo \[OA\] và \[CD\] vuông góc với nhau và cắt nhau tại trung điểm \[H\] của mỗi đường nên tứ giác \[CODA\] là hình thoi.

Do đó khẳng định (i) là đúng.

⦁ Vì tứ giác \[CODA\] là hình thoi nên \[AC = OC.\]

Mà \[OA = OC = R\] nên \[OA = OC = AC = R.\]

Vì vậy tam giác \[OAC\] là tam giác đều. Suy ra \[\widehat {COA} = 60^\circ .\]

Ta có \[CI\] tiếp xúc với đường tròn \[\left( O \right)\], với \[C\] là tiếp điểm. Suy ra \[OC \bot CI.\]

Vì tam giác \[OCI\] vuông tại \[C\] nên \[CI = OC \cdot \tan \widehat {COA} = R \cdot \tan 60^\circ = R\sqrt 3 .\]

Do đó \[CI = R\sqrt 3 \] nên khẳng định (ii) là đúng.

Vậy ta chọn phương án C.


Câu 13:

III. Vận dụng

Cho hai đường thẳng \[a\] và \[b\] song song với nhau, cách nhau một khoảng là \[h.\] Một đường tròn \[\left( O \right)\] tiếp xúc với \[a\] và \[b.\] Hỏi tâm \[O\] di động trên đường nào?

Xem đáp án

Đáp án đúng là: B

Cho hai đường thẳng  a  và  b  song song với nhau, cách nhau một khoảng là  h .  Một đường tròn  ( O )  tiếp xúc với  a  và  b .  Hỏi tâm  O  di động trên đường nào? (ảnh 1)

Kẻ \[OA \bot a\] tại \[A\], đường thẳng \[OA\] cắt đường thẳng \[b\] tại \[B.\]

Theo đề, ta có \[AB = h.\]

Vì \[AB \bot a\] và \[a\,{\rm{//}}\,b\] nên \[AB \bot B\] tại \[B.\]

Do đường tròn \[\left( O \right)\] tiếp xúc với \[a\] và \[b\] nên \[OA = OB\] hay \[O\] là trung điểm \[AB.\]

Suy ra \[OA = OB = \frac{{AB}}{2} = \frac{h}{2}.\]

Khi đó tâm \[O\] cách \[a\] và \[b\] một khoảng cùng bằng \[\frac{h}{2}.\]

Vì vậy \[O\] chạy trên đường thẳng \[c\] song song và cách đều \[a\] và \[b\] một khoảng cùng bằng \[\frac{h}{2}.\]

Vậy ta chọn phương án B.


Câu 14:

Cho đường tròn \[\left( {O;R} \right)\] và điểm \[A\] nằm ngoài \[\left( O \right).\] Từ \[A\] kẻ hai đường thẳng \[AB,AC\] tiếp xúc với đường tròn \[\left( O \right)\] (hai điểm \[B,C\] là các tiếp điểm). Gọi \[H\] là giao điểm của \[OA\] và \[BC.\] Lấy \[D\] đối xứng với \[B\] qua \[O.\] Gọi \[E\] là giao điểm của đoạn thẳng \[AD\] với đường tròn \[\left( O \right)\] (điểm \[E\] khác điểm \[D\]) . Tỉ số \[\frac{{DE}}{{BE}}\] bằng

Xem đáp án

Đáp án đúng là: D

Cho đường tròn  ( O ; R )  và điểm  A  nằm ngoài  ( O ) .  Từ  A  kẻ hai đường thẳng  A B , A C  tiếp xúc với đường tròn  ( O )  (hai điểm  B , C  là các tiếp điểm). (ảnh 1)

Ta có \[D\] đối xứng với \[B\] qua \[O.\] Suy ra \[O\] là trung điểm \[BD.\] Do đó \[BD\] là đường kính của đường tròn \[\left( O \right).\]

Tam giác \[BED\] có \[EO\] là đường trung tuyến và \[EO = \frac{{BD}}{2}\] nên tam giác \[BED\] vuông tại \[E.\]

Ta có \[AB\] tiếp xúc với đường tròn \[\left( O \right)\] tại \(B\) nên \[AB \bot BD.\]

Xét \[\Delta BED\] và \[\Delta ABD,\] có:

\[\widehat {BED} = \widehat {ABD} = 90^\circ \] và \[\widehat {BDE}\] là góc chung.

Do đó (g.g)

Suy ra \[\frac{{DE}}{{DB}} = \frac{{BE}}{{AB}}\] hay \[\frac{{DE}}{{BE}} = \frac{{DB}}{{AB}}.\]

Vậy ta chọn phương án D.


Câu 15:

Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB = 1,2R.\] Vẽ đường thẳng tiếp xúc với \[\left( {O;R} \right)\] và song song với \[AB,\] cắt các tia \[OA,OB\] lần lượt tại \[E\] và \[F.\] Diện tích tam giác \[OEF\] theo \[R\] là

Xem đáp án

Đáp án đúng là: A

Cho đường tròn  ( O ; R )  và dây  A B = 1 , 2 R .  Vẽ đường thẳng tiếp xúc với  ( O ; R )  và song song với  A B ,  cắt các tia  O A , O B  lần lượt tại  E  và  F .  Diện tích tam giác  O E F  theo  R  là (ảnh 1)

Giả sử đường thẳng \[EF\] tiếp xúc với đường tròn \[\left( O \right)\] tại \[H.\] Khi đó \[OH \bot EF.\]

Gọi \[I\] là giao điểm của \[OH\] và \[AB.\]

Vì \[EF\,{\rm{//}}\,AB\] nên \[OH \bot AB.\]

Vì tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R\]) nên \[OI\] vừa là đường cao, vừa là đường trung tuyến của tam giác. Do đó \[I\] là trung điểm \[AB.\]

Vì vậy \[IA = IB = \frac{{AB}}{2} = \frac{{1,2R}}{2} = 0,6R.\]

Áp dụng định lí Pythagore cho tam giác \[OAI\] vuông tại \[I,\] ta được: \[O{A^2} = O{I^2} + A{I^2}.\]

Suy ra \[O{I^2} = O{A^2} - A{I^2} = {R^2} - {\left( {0,6R} \right)^2} = 0,64{R^2}.\]

Do đó \[OI = 0,8R.\]

Vì \[AI\,{\rm{//}}\,EH\] nên áp dụng định lí Thales, ta có \[\frac{{AI}}{{EH}} = \frac{{OI}}{{OH}}.\]

Suy ra \[\frac{{0,6R}}{{EH}} = \frac{{0,8R}}{R}.\]

Do đó \[EH = 0,75R.\]

Vì \[AB\,{\rm{//}}\,EF\] nên \[\widehat {OAB} = \widehat {OEF}\] (cặp góc đồng vị).

Chứng minh tương tự, ta được \[\widehat {OBA} = \widehat {OFE}.\]

Mà \[\widehat {OBA} = \widehat {OAB}\] (do tam giác \[OAB\] cân tại \[O\]).

Do đó \[\widehat {OEF} = \widehat {OFE}.\] Vì vậy tam giác \[OEF\] cân tại \[O.\]

Tam giác \[OEF\] cân tại \[O\] có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác.

Do đó \[H\] là trung điểm \[EF.\]

Vì vậy \[EF = 2EH = 2 \cdot 0,75R = 1,5R.\]

Diện tích tam giác \[OEF\] là: \[{S_{OEF}} = \frac{1}{2} \cdot OH \cdot EF = \frac{1}{2} \cdot R \cdot 1,5R = 0,75{R^2}.\]

Vậy ta chọn phương án A.


Bắt đầu thi ngay