15 câu trắc nghiệm Toán 9 Cánh diều Bài 2. Vị trí tương đối của đường thẳng và đường tròn có đáp án
15 câu trắc nghiệm Toán 9 Cánh diều Bài 2. Vị trí tương đối của đường thẳng và đường tròn có đáp án
-
34 lượt thi
-
15 câu hỏi
-
60 phút
Danh sách câu hỏi
Câu 1:
I. Nhận biết
Đường thẳng và đường tròn có nhiều nhất bao nhiêu điểm chung?
Đáp án đúng là: B
Đường thẳng và đường tròn có nhiều nhất 2 điểm chung.
Vậy ta chọn phương án B.
Câu 2:
Nếu đường thẳng và đường tròn có duy nhất một điểm chung thì
Đáp án đúng là: A
Đường thẳng và đường tròn gọi là tiếp xúc với nhau nếu chúng có duy nhất một điểm chung.
Do đó ta chọn phương án A.
Câu 3:
Cho đường tròn \[\left( O \right)\] và đường thẳng \[a.\] Kẻ \[OH \bot a\] tại điểm \[H,\] biết \[OH > R.\] Khi đó, đường thẳng \[a\] và đường tròn \[\left( O \right)\] có vị trí tương đối là
Đáp án đúng là: C
Vì \[OH > R\] nên đường thẳng \[a\] và đường tròn \[\left( O \right)\] không cắt nhau.
Vậy ta chọn phương án C.
Câu 4:
Cho đường tròn \[\left( O \right)\] và đường thẳng \[a.\] Kẻ \[OH \bot a\] tại điểm \[H,\] biết \[OH < R.\] Khi đó, đường thẳng \[a\] và đường tròn \[\left( O \right)\]
Đáp án đúng là: B
Vì \[OH < R\] nên đường thẳng \[a\] và đường tròn \[\left( O \right)\] cắt nhau.
Vậy ta chọn phương án B.
Câu 5:
Cho đường tròn \[\left( O \right)\] và đường thẳng \[a.\] Kẻ \[OH \bot a\] tại điểm \[H,\] biết \[OH = R.\] Khi đó, đường thẳng \[a\] và đường tròn \[\left( O \right)\]
Đáp án đúng là: A
Vì \[OH = R\] nên đường thẳng \[a\] và đường tròn \[\left( O \right)\] tiếp xúc với nhau. Khi đó \[H\] được gọi là tiếp điểm và đường thẳng \[a\] còn gọi là tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H.\]
Vậy ta chọn phương án A.
Câu 6:
II. Thông hiểu
Cho \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[3{\rm{\;cm}}.\] Lấy điểm \[I\] trên \[a\] và vẽ đường tròn \[\left( {I;3,5{\rm{\;cm}}} \right).\] Khi đó đường tròn \[\left( I \right)\] với đường thẳng \[b\]
Đáp án đúng là: A
Kẻ \[IH \bot b\] tại \[H.\]
Vì \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[3{\rm{\;cm}}\] và \[I \in a\] nên khoảng cách từ tâm \[I\] đến đường thẳng \[b\] là \[IH = 3{\rm{\;(cm)}}{\rm{.}}\]
Do \[IH = 3{\rm{\;cm}} < R = 3,5{\rm{\;cm}}\] nên đường tròn \[\left( I \right)\] với đường thẳng \[b\] cắt nhau.
Vậy ta chọn phương án A.
Câu 7:
Cho \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[2,5{\rm{\;cm}}.\] Lấy điểm \[I\] trên \[a\] và vẽ đường tròn \[\left( {I;2,5{\rm{\;cm}}} \right).\] Khi đó đường tròn \[\left( I \right)\] với đường thẳng \[b\]
Đáp án đúng là: B
Kẻ \[IH \bot b\] tại \[H.\]
Vì \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[2,5{\rm{\;cm}}\] và \[I \in a\] nên khoảng cách từ tâm \[I\] đến đường thẳng \[b\] là \[IH = 2,5{\rm{\;(cm)}}{\rm{.}}\]
Do \[IH = R = 2,5{\rm{\;(cm)}}\] nên đường tròn \[\left( I \right)\] với đường thẳng \[b\] tiếp xúc nhau tại tiếp điểm \[H.\]
Vậy ta chọn phương án B.
Câu 8:
Cho bảng sau với \[R\] là bán kính của đường tròn, \[d\] là khoảng cách từ tâm đến đường thẳng:
\[R\] |
\[d\] |
Vị trí tương đối của đường thẳng và đường tròn |
5 cm |
4 cm |
(1) |
8 cm |
(2) |
Tiếp xúc nhau |
Điền vào các vị trí (1), (2) trong bảng trên là
Đáp án đúng là: A
⦁ Vì \[4{\rm{\;cm}} < 5{\rm{\;cm}}\] nên \[d < R.\] Suy ra đường thẳng cắt đường tròn.
⦁ Vì đường thẳng tiếp xúc với đường tròn nên \[d = R.\] Suy ra \[d = 8{\rm{\;cm}}.\]
Do đó ở vị trí (1) ta điền “Cắt nhau”; ở vị trí (2) ta điền “8 cm”.
Vậy ta chọn phương án A.
Câu 9:
Cho đường thẳng \[d\] và một điểm \[I\] cách \[d\] một khoảng bằng 10 cm. Vẽ đường tròn \[\left( I \right)\] đường kính 18 cm. Khi đó đường thẳng \[d\] và đường tròn \[\left( I \right)\] là
Đáp án đúng là: C
Kẻ \[IH \bot d\] tại \[H.\] Suy ra \[IH = 10{\rm{\;(cm)}}{\rm{.}}\]
Bán kính của đường tròn \[\left( I \right)\] là: \[R = \frac{{18}}{2} = 9{\rm{\;(cm)}}{\rm{.}}\]
Vì \[10{\rm{\;cm}} > 9{\rm{\;cm}}\] nên \[IH > R.\]
Do đó đường thẳng \[d\] và đường tròn \[\left( I \right)\] không giao nhau.
Vậy ta chọn phương án C.
Câu 10:
Cho đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}\] và một điểm \[A\] cách \[O\] là \[7{\rm{\;cm}}.\] Kẻ đường thẳng \[AB\] tiếp xúc với đường tròn \(\left( O \right)\) (điểm \[B\] là tiếp điểm). Khi đó độ dài \[AB\] là
Đáp án đúng là: C
Vì \[AB\] tiếp xúc với đường tròn \[\left( O \right),\] với \[B\] là tiếp điểm nên \[AB \bot OB\] tại \[B.\]
Áp dụng định lí Pythagore cho tam giác \[OAB\] vuông tại \[B,\] ta được: \[O{A^2} = O{B^2} + A{B^2}.\]
Suy ra \[A{B^2} = O{A^2} - O{B^2} = {7^2} - {4^2} = 33.\] Do đó \[AB = \sqrt {33} {\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án C.
Câu 11:
Cho đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và một điểm \[A\] nằm ngoài \[\left( O \right).\] Qua \[A,\] kẻ đường thẳng cắt đường tròn \[\left( O \right)\] tại hai điểm \[B\] và \[C\] (điểm \[B\] nằm giữa hai điểm \[A\] và \[C)\] sao cho \[AB = BC.\] Vẽ đường kính \[CD\] của đường tròn \[\left( O \right).\] Khi đó độ dài đoạn \[AD\] bằng
Đáp án đúng là: B
Đường tròn \[\left( O \right)\] có \[CD\] là đường kính nên tâm \[O\] là trung điểm \[CD\] hay \[OC = OD = \frac{{CD}}{2} = BO.\]
Xét tam giác \[BCD\] có \[BO\] là đường trung tuyến ứng với cạnh \(CD\) và \[BO = \frac{{CD}}{2}\] nên tam giác \[BCD\] vuông tại \[B.\]
Do đó \[BD \bot AC\] tại \[B.\] Vì \[AB = BC\] nên \[B\] là trung điểm \[AC.\]
Tam giác \[ACD\] có \[DB\] vừa là đường cao, vừa là đường trung tuyến, suy ra tam giác \[ACD\] cân tại \[D.\] Do đó \[AD = CD = 2OD = 2 \cdot 5 = 10{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án B.
Câu 12:
Cho đường tròn \[\left( O \right),\] bán kính \[R = OA,\] dây \[CD\] là đường trung trực của \[OA.\] Kẻ đường thẳng tiếp xúc với đường tròn tại \[C,\] cắt đường thẳng \[OA\] tại \[I.\] Cho các khẳng định sau:
(i) Tứ giác \[CODA\] là hình thoi.
(ii) \[CI = R\sqrt 3 .\]
Kết luận nào sau đây đúng nhất?
Đáp án đúng là: C
⦁ Gọi \[H\] là giao điểm của \[CD\] và \[OA.\]
Ta có \[CD\] là đường trung trực của \[OA.\] Suy ra \[H\] là trung điểm \[OA\] và \[CD \bot OA\] tại \[H.\]
Tam giác \[OCD\] cân tại \[O\] (vì \[OC = OD = R\]) có \[OH\] là đường cao, suy ra \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[CD.\]
Tứ giác \[CODA\] có hai đường chéo \[OA\] và \[CD\] vuông góc với nhau và cắt nhau tại trung điểm \[H\] của mỗi đường nên tứ giác \[CODA\] là hình thoi.
Do đó khẳng định (i) là đúng.
⦁ Vì tứ giác \[CODA\] là hình thoi nên \[AC = OC.\]
Mà \[OA = OC = R\] nên \[OA = OC = AC = R.\]
Vì vậy tam giác \[OAC\] là tam giác đều. Suy ra \[\widehat {COA} = 60^\circ .\]
Ta có \[CI\] tiếp xúc với đường tròn \[\left( O \right)\], với \[C\] là tiếp điểm. Suy ra \[OC \bot CI.\]
Vì tam giác \[OCI\] vuông tại \[C\] nên \[CI = OC \cdot \tan \widehat {COA} = R \cdot \tan 60^\circ = R\sqrt 3 .\]
Do đó \[CI = R\sqrt 3 \] nên khẳng định (ii) là đúng.
Vậy ta chọn phương án C.
Câu 13:
III. Vận dụng
Cho hai đường thẳng \[a\] và \[b\] song song với nhau, cách nhau một khoảng là \[h.\] Một đường tròn \[\left( O \right)\] tiếp xúc với \[a\] và \[b.\] Hỏi tâm \[O\] di động trên đường nào?
Đáp án đúng là: B
Kẻ \[OA \bot a\] tại \[A\], đường thẳng \[OA\] cắt đường thẳng \[b\] tại \[B.\]
Theo đề, ta có \[AB = h.\]
Vì \[AB \bot a\] và \[a\,{\rm{//}}\,b\] nên \[AB \bot B\] tại \[B.\]
Do đường tròn \[\left( O \right)\] tiếp xúc với \[a\] và \[b\] nên \[OA = OB\] hay \[O\] là trung điểm \[AB.\]
Suy ra \[OA = OB = \frac{{AB}}{2} = \frac{h}{2}.\]
Khi đó tâm \[O\] cách \[a\] và \[b\] một khoảng cùng bằng \[\frac{h}{2}.\]
Vì vậy \[O\] chạy trên đường thẳng \[c\] song song và cách đều \[a\] và \[b\] một khoảng cùng bằng \[\frac{h}{2}.\]
Vậy ta chọn phương án B.
Câu 14:
Cho đường tròn \[\left( {O;R} \right)\] và điểm \[A\] nằm ngoài \[\left( O \right).\] Từ \[A\] kẻ hai đường thẳng \[AB,AC\] tiếp xúc với đường tròn \[\left( O \right)\] (hai điểm \[B,C\] là các tiếp điểm). Gọi \[H\] là giao điểm của \[OA\] và \[BC.\] Lấy \[D\] đối xứng với \[B\] qua \[O.\] Gọi \[E\] là giao điểm của đoạn thẳng \[AD\] với đường tròn \[\left( O \right)\] (điểm \[E\] khác điểm \[D\]) . Tỉ số \[\frac{{DE}}{{BE}}\] bằng
Đáp án đúng là: D
Ta có \[D\] đối xứng với \[B\] qua \[O.\] Suy ra \[O\] là trung điểm \[BD.\] Do đó \[BD\] là đường kính của đường tròn \[\left( O \right).\]
Tam giác \[BED\] có \[EO\] là đường trung tuyến và \[EO = \frac{{BD}}{2}\] nên tam giác \[BED\] vuông tại \[E.\]
Ta có \[AB\] tiếp xúc với đường tròn \[\left( O \right)\] tại \(B\) nên \[AB \bot BD.\]
Xét \[\Delta BED\] và \[\Delta ABD,\] có:
\[\widehat {BED} = \widehat {ABD} = 90^\circ \] và \[\widehat {BDE}\] là góc chung.
Do đó (g.g)
Suy ra \[\frac{{DE}}{{DB}} = \frac{{BE}}{{AB}}\] hay \[\frac{{DE}}{{BE}} = \frac{{DB}}{{AB}}.\]
Vậy ta chọn phương án D.
Câu 15:
Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB = 1,2R.\] Vẽ đường thẳng tiếp xúc với \[\left( {O;R} \right)\] và song song với \[AB,\] cắt các tia \[OA,OB\] lần lượt tại \[E\] và \[F.\] Diện tích tam giác \[OEF\] theo \[R\] là
Đáp án đúng là: A
Giả sử đường thẳng \[EF\] tiếp xúc với đường tròn \[\left( O \right)\] tại \[H.\] Khi đó \[OH \bot EF.\]
Gọi \[I\] là giao điểm của \[OH\] và \[AB.\]
Vì \[EF\,{\rm{//}}\,AB\] nên \[OH \bot AB.\]
Vì tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R\]) nên \[OI\] vừa là đường cao, vừa là đường trung tuyến của tam giác. Do đó \[I\] là trung điểm \[AB.\]
Vì vậy \[IA = IB = \frac{{AB}}{2} = \frac{{1,2R}}{2} = 0,6R.\]
Áp dụng định lí Pythagore cho tam giác \[OAI\] vuông tại \[I,\] ta được: \[O{A^2} = O{I^2} + A{I^2}.\]
Suy ra \[O{I^2} = O{A^2} - A{I^2} = {R^2} - {\left( {0,6R} \right)^2} = 0,64{R^2}.\]
Do đó \[OI = 0,8R.\]
Vì \[AI\,{\rm{//}}\,EH\] nên áp dụng định lí Thales, ta có \[\frac{{AI}}{{EH}} = \frac{{OI}}{{OH}}.\]
Suy ra \[\frac{{0,6R}}{{EH}} = \frac{{0,8R}}{R}.\]
Do đó \[EH = 0,75R.\]
Vì \[AB\,{\rm{//}}\,EF\] nên \[\widehat {OAB} = \widehat {OEF}\] (cặp góc đồng vị).
Chứng minh tương tự, ta được \[\widehat {OBA} = \widehat {OFE}.\]
Mà \[\widehat {OBA} = \widehat {OAB}\] (do tam giác \[OAB\] cân tại \[O\]).
Do đó \[\widehat {OEF} = \widehat {OFE}.\] Vì vậy tam giác \[OEF\] cân tại \[O.\]
Tam giác \[OEF\] cân tại \[O\] có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác.
Do đó \[H\] là trung điểm \[EF.\]
Vì vậy \[EF = 2EH = 2 \cdot 0,75R = 1,5R.\]
Diện tích tam giác \[OEF\] là: \[{S_{OEF}} = \frac{1}{2} \cdot OH \cdot EF = \frac{1}{2} \cdot R \cdot 1,5R = 0,75{R^2}.\]
Vậy ta chọn phương án A.