IMG-LOGO
Trang chủ Lớp 9 Toán Ôn thi Cấp tốc 789+ vào 10 môn Toán khu vực Khánh Hòa 2024 - 2025 (Đề 17)

Ôn thi Cấp tốc 789+ vào 10 môn Toán khu vực Khánh Hòa 2024 - 2025 (Đề 17)

Ôn thi Cấp tốc 789+ vào 10 môn Toán khu vực Khánh Hòa 2024 - 2025 (Đề 17)

  • 22 lượt thi

  • 5 câu hỏi

  • 50 phút

Danh sách câu hỏi

Câu 1:

Không sử dụng máy tính cầm tay:

1) Rút gọn biểu thức \(A = \sqrt {36}  + \sqrt 9  - \sqrt {81} \).

2) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{r}}{x + 3y = 6}\\{2x - 3y = 3}\end{array}} \right.\).

3) Giải phương trình \(3{x^2} - 7x + 4 = 0\).

Xem đáp án

a) \(A = \sqrt {36}  + \sqrt 9  - \sqrt {81} \)\( = \sqrt {{6^2}}  + \sqrt {{3^2}}  - \sqrt {{9^2}} \)\( = 6 + 3 - 9 = 0\).

Vậy \(A = 0\).

b) \(\left\{ {\begin{array}{*{20}{l}}{x + 3y = 6}\\{2x - 3y = 3}\end{array}} \right.\). Cộng từng vế của phương trình mới, ta được: \(3x = 9\), tức là \[x = 3.\]

Thế \[x = 3\] vào phương trình \(x + 3y = 6\) ta có: \(3 + 3y = 6\) nên \(3y = 3\) hay \[y = 1.\]

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,1} \right).\)

c) \(3{x^2} - 7x + 4 = 0\).

Cách 1: Ta có \(a + b + c = 3 + \left( { - 7} \right) + 4 = 0\).

Do đó phương trình đã cho có hai nghiệm phân biệt: \(x = 1\,;\,\,x = \frac{c}{a} = \frac{4}{3}.\)

Cách 2: Ta có \(\Delta  = {b^2} - 4ac = {\left( { - 7} \right)^2} - 4 \cdot 3 \cdot 4 = 1 > 0.\)

Do đó phương trình có hai nghiệm phân biệt:

\(x = \frac{{ - b + \sqrt {\rm{\Delta }} }}{{2a}} = \frac{{7 + \sqrt 1 }}{{2 \cdot 3}} = \frac{4}{3}\,;\,\,x = \frac{{ - b - \sqrt {\rm{\Delta }} }}{{2a}} = \frac{{7 - \sqrt 1 }}{{2 \cdot 3}} = 1.\)

Vậy phương trình có hai nghiệm phân biệt: \(x = 1\,;\,\,x = \frac{4}{3}.\)


Câu 2:

Trong mặt phẳng tọa độ \(Oxy\), cho parabol \(\left( P \right):y = 2{x^2}\) và đường thẳng \(\left( d \right):y = \left( {m + 1} \right)x + 4\), với \(m\) là tham số.

1) Vẽ parabol \(\left( P \right)\).

2) Tìm tất cả các giá trị của tham số \(m\) để đường thẳng \(\left( d \right)\) cắt parabol \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} - {x_1}{x_2} = 6\).
Xem đáp án

1) Tập xác định \(D = \mathbb{R}\).

Bảng giá trị:

\(x\)

\( - 2\)

\( - 1\)

0

1

2

\(y = 2{x^2}\)

8

2

0

2

8

Đồ thị hàm số \(y = 2{x^2}\) là parabol nhận \[Oy\] làm trục đối xứng, có đỉnh \(O\left( {0\,;\,\,0} \right)\), bề lõm hướng lên và đi qua các điểm \[\left( { - 1\,;\,\,2} \right),\,\,\left( {1\,;\,\,2} \right),\,\]\(\left( { - 2\,;\,\,8} \right),\,\,\left( {2\,;\,\,8} \right).\)
Trong mặt phẳng tọa độ Oxy, cho parabol P:y=2x^2 và đường thẳng \d:y = (m+1))x + 4, với m là tham số.  1) Vẽ parabol P (ảnh 1)

2) Ta có: \({\rm{\Delta }} = {\left[ { - \left( {m + 1} \right)} \right]^2} - 4 \cdot 2 \cdot \left( { - 4} \right) = {\left( {m + 1} \right)^2} + 32 > 0\) với mọi \(m\) nên phương trình luôn có hai nghiệm phân biệt \({x_1},{x_2}\).

Theo Viète, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = \frac{{m + 1}}{2}}\\{{x_1} \cdot {x_2} =  - 2}\end{array}} \right.\).

Thay vào biểu thức \({x_1} + {x_2} - {x_1} \cdot {x_2} = 6\) ta được: \(\frac{{m + 1}}{2} - \left( { - 2} \right) = 6\) hay \(\frac{{m + 1}}{2} = 4.\)

Do đó \(m + 1 = 8\) nên \(m = 7.\)

Vậy với \(m = 7\) thì \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} - {x_1} \cdot {x_2} = 6\).

 

Câu 3:

1) Một mảnh đất có dạng hình chữ nhật với chu vi bằng \[52{\rm{ m}}.\] Trên mảnh đất đó, người ta làm một vườn rau có dạng hình chữ nhật với diện tích \(112{\rm{\;}}{{\rm{m}}^2}\) và một lối đi xung quanh vườn rau rộng \[1{\rm{ m}}\] (Hình 1). Tính các kích thước của mảnh đất đó.
1) Một mảnh đất có dạng hình chữ nhật với chu vi bằng 52m Trên mảnh đất đó, người ta làm một vườn rau có dạng hình chữ nhật với diện tích (ảnh 1)
2) Người ta thả một viên bi hình cầu không thấm nước, có bán kính bằng \[3{\rm{ cm}}\] ngập hoàn toàn trong một ly nước hình trụ có bán kính đáy bằng \[5{\rm{ cm,}}\] ly được đặt thẳng đứng so với mặt nằm ngang và đủ to để nước không tràn ra ngoài (Hình 2). Hỏi sau khi thả viên bi vào thì mục nước trong ly dâng lên bao nhiêu centimet? Biết thể tích của hình cầu có
1) Một mảnh đất có dạng hình chữ nhật với chu vi bằng 52m Trên mảnh đất đó, người ta làm một vườn rau có dạng hình chữ nhật với diện tích (ảnh 2)

Bán kính \(R\) là \(V = \frac{4}{3}\pi {R^3}\), thể tích hình trụ có bán kính đáy \(r\) và chiều cao \(h\) là \(V = \pi {r^2}h.\)

Xem đáp án

1) Gọi \(x,y\,\,\left( m \right)\) lần lượt là chiều dài và chiều rộng của mảnh đất đã cho \[\left( {x,y > 0\,;\,\,x > y} \right).\]

Nửa chu vi mảnh đất hình chữ nhật là: \(52:2 = 26\,\,\left( {\rm{m}} \right)\) hay \(x + y = 26. & \left( 1 \right)\)

Diện tích mảnh đất hình chữ nhật là: \(\left( {x - 2} \right)\left( {y - 2} \right) = 112\) hay \(xy - 2\left( {x + y} \right) = 108.\,\,\,\,\,\left( 2 \right)\)

Thay \[\left( 1 \right)\] vào \[\left( 2 \right)\] ta có \(xy - 2 \cdot 26 = 108\) nên \(xy = 160. & \left( 3 \right)\)

Từ \[\left( 1 \right)\] và \(\left( 3 \right)\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 26\\xy = 160\end{array} \right.\).

Từ phương trình thứ nhất ta có \(y = 26 - x\). Thế vào phương trình thứ hai, ta được

\(x\left( {26 - x} \right) = 160\) hay \({x^2} - 26x + 160 = 0 & \left( * \right)\)

Giải phương trình \(\left( * \right)\), ta được: \(x = 16\) hoặc \(x = 10\).

– Với \(x = 16\) thì \(y = 26 - 16 = 10\) (thỏa mãn điều kiện \[x > y).\]

– Với \(x = 10\) thì \(y = 26 - 10 = 16\) (không thỏa mãn điều kiện \[x > y).\]

Vậy chiều dài ban đầu của khu vườn là \(10\,\,{\rm{m}}\) và chiều rộng ban đầu của khu vườn là \(16\,\,{\rm{m}}{\rm{.}}\)

2) Thể tích của viên bi là: \({V_{bi}} = \frac{4}{3}\pi  \cdot {3^3} = 36\pi \left( {{\rm{c}}{{\rm{m}}^3}} \right)\).

Phần thể tích nước tăng lên sau khi thả viên bi là:

\({V_t} = \pi {R^2}h = \pi  \cdot {5^2} \cdot h = 25\pi h\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Vì phần thể tích nước tăng bằng thể tích của viên bi nên \(25\pi h = 36\pi \), suy ra \(h = \frac{{36}}{{25}}\,\,\left( {{\rm{cm}}} \right).\)

Vậy sau khi thả viên bi vào thì mực nước trong ly dâng lên \(\frac{{36}}{{25}}\,\,{\rm{cm}}.\)


Câu 4:

Cho đường tròn \(\left( {O\,;\,\,R} \right)\) và điểm \(M\) nằm ngoài đường tròn (với \(OM \ne 2R).\) Qua \(M\) kẻ hai tiếp tuyến \(MA,\,\,MB\) đến đường tròn \(\left( O \right)\) (với \(A,B\) là các tiếp điểm).

1) Chứng minh tứ giác \(MAOB\) nội tiếp đường tròn.

2) Qua \(A\) kẻ đường thẳng song song với \(MB\) cắt đường tròn \(\left( O \right)\) tại \(C\) (khác \(A),\) đường thẳng \(MC\) cắt đường tròn \(\left( O \right)\) tại \(E\) (khác \(C).\) Chứng minh \(\widehat {AEB} = \widehat {BEM}\).

3) Gọi \(H\) là giao điểm của \(OM\) và \(AB\,;\,\,I\) là điểm đối xứng của \(E\) qua \(OM.\) Chứng minh \(ME \cdot MC = MH \cdot MO\) và ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.
Xem đáp án

1) Chứng minh tứ giác \(MAOB\) nội tiếp đường tròn.

Cho đường tròn (O,R) và điểm M nằm ngoài đường tròn (với OM < 2R) Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn  (ảnh 1)

Vì \(MA,\,\,MB\) là tiếp tuyến của đường tròn \(\left( O \right)\) (vi \(A,B\) là các tiếp đim) nên

\(MA \bot OA\,,\,\,MB \bot OB\)

Hay \(\widehat {OAM} = \widehat {OBM} = 90^\circ \).

Xét tứ giác \(MAOB\) có

\(\widehat {OAM} + \widehat {OBM} = 90^\circ + 90^\circ = 180^\circ \).

 

Mà hai góc này ở vị trí đối diện nên tứ giác \(MAOB\) nội tiếp đường tròn.

2) Chứng minh \(\widehat {AEB} = \widehat {BEM}\).

Vì \(AC\,{\rm{//}}\,MB\,\,\left( {{\rm{gt}}} \right)\) nên \(\widehat {ACE} = \widehat {BME}\) (so le trong)

Mà \(\widehat {ACE} = \widehat {ABE}\) (góc nội tiếp cùng chắn cung \(AE)\), suy ra \(\widehat {ABE} = \widehat {BME}{\rm{.\;}}\)

Vì \(\Delta OBE\) cân tại \(O\) \(\left( {OB = OE} \right)\) nên \(\widehat {OBE} = \widehat {OEB}.\)

Suy ra \(\widehat {OBE} = \widehat {OEB} = \frac{{180^\circ - \widehat {BOE}}}{2} = 90^\circ - \frac{{\widehat {BOE}}}{2}.\)

Vì \[MB\] là tiếp tuyến với đường tròn \[\left( O \right)\] tại điểm \[B\] nên \(OB \bot MB\) hay \(\widehat {OBM} = 90^\circ .\)

Suy ra \[\widehat {MBE} = 90^\circ - \widehat {OBE}\]\[ = 90^\circ - \left( {90^\circ - \frac{{\widehat {BOE}}}{2}} \right) = \frac{{\widehat {BOE}}}{2}.\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\]

Mặt khác  nên \[\widehat {BAE} = \frac{{\widehat {BOE}}}{2}.\,\,\,\,\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \(\widehat {BAE} = \widehat {MBE}\).

Xét \(\Delta ABE\)\(\Delta BME\) có: \(ABE = BME\,\,\left( {{\rm{cmt}}} \right)\); \(\widehat {BAE} = \widehat {MBE}\,\,\left( {{\rm{cmt}}} \right)\).

Do đó . Suy ra \(\widehat {AEB} = \widehat {BEM}\) (hai góc tương ứng) (đpcm).

3) Chứng minh \(ME \cdot MC = MH \cdot MO\) và ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.

– Chứng minh \(ME \cdot MC = MH \cdot MO\).

Vì \(\Delta OAE\) cân tại \(O\) \(\left( {OA = OE} \right)\) nên \(\widehat {OAE} = \widehat {OEA}.\)

Suy ra \(\widehat {OAE} = \widehat {OEA} = \frac{{180^\circ - \widehat {AOE}}}{2} = 90^\circ - \frac{{\widehat {AOE}}}{2}.\)

Vì \[MA\] là tiếp tuyến với đường tròn \[\left( O \right)\] tại điểm \[A\] nên \(OA \bot MA\) hay \(\widehat {OAM} = 90^\circ .\)

Suy ra \[\widehat {MAE} = 90^\circ - \widehat {OAE}\]\[ = 90^\circ - \left( {90^\circ - \frac{{\widehat {AOE}}}{2}} \right) = \frac{{\widehat {AOE}}}{2}.\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\]

Mặt khác  nên \[\widehat {ACM} = \frac{{\widehat {AOE}}}{2}.\,\,\,\,\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \(\widehat {MAE} = \widehat {ACM}\).

Xét \(\Delta AME\)\(\Delta CMA\) có: \(\widehat {AME}\) chung; \(\widehat {MAE} = \widehat {ACM}\) (cmt)

Do đó . Suy ra \(\frac{{MA}}{{ME}} = \frac{{MC}}{{MA}}\) hay \(M{A^2} = ME \cdot MC.\,\,\,\,\,\left( 1 \right)\)

Vi \(MA,\,\,MB\)hai tiếp tuyến của đường tròn \(\left( O \right)\) nên \(MA = MB.\)

Lại có \(OA = OB\) nên \(MO\) là đường trung trực của \(AB\) nên \(AB \bot MO\) tại \[H.\]

Xét \[\Delta OAM\] vuông tại \(A\) có đường cao \(AH\), ta c \(M{A^2} = MH \cdot MO.\,\,\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\)\(\left( 2 \right)\) suy ra \(ME \cdot MC = MH \cdot MO\) (đpcm).

– Chứng minh ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.

Do \(I\) lả điểm đối xứng của \(E\) qua \(OM\) nên \(OM\) là đường trung trực của \(EI\) nên \(OE = OI,\) suy ra \(I \in \left( {O\,;R} \right).\)

Do \(ME \cdot MC = MH \cdot MO\) nên \(\frac{{ME}}{{MH}} = \frac{{MO}}{{MC}}\).

Xét \(\Delta MEH\) và \(\Delta MOC\) có \(\widehat {OME}\) chung; \(\frac{{ME}}{{MH}} = \frac{{MO}}{{MC}}\) (cmt).

Do đó  suy ra \(\widehat {MHE} = \widehat {MCO}\) (hai góc tương ứng).

Mà \(\widehat {MHE} + \widehat {EHO} = 180^\circ \) nên \(\widehat {MCO} + \widehat {EHO} = 180^\circ .\)

Mà \[\widehat {MCO}\] và \[\widehat {EHO}\] ở vị trí đối diện nên tứ giác \(EHOC\) nội tiếp đường tròn.

Suy ra \(\widehat {EHC} = \widehat {EOC}\) (cng chắn cung \(EC\,).\)

Ta c \(\widehat {IHE} = 2\widehat {MHE}\) (tính chất đường trung trực)

\(\widehat {MHE} = \widehat {MCO}\) nên

\(\widehat {IHE} + \widehat {EHC} = 2\widehat {MHE} + \widehat {EOC}\)\( = 2\widehat {MCO} + \widehat {EOC} = \widehat {MCO} + \widehat {CEO} + \widehat {EOC} = 180^\circ \).

Vậy ba điểm \(C,\,\,H,\,\,I\) thẳng hàng.


Câu 5:

Tủ sách học tốt của lớp 9A có hai loại tạp chí, gồm tạp chí Toán học & Tuổi trẻ (TH&TT) và tạp chí Pi. Biết rằng số tạp chí TH&TT nhiều hơn số tạp chí Pi; tổng số tạp chí TH&TT và hai lần số tạp chí Pi nhiều hơn 54; tổng số tạp chí Pi và hai lần số tạp chí TH&TT ít hơn 57. Tính số tạp chí mỗi loại.

Xem đáp án

Gọi \(x\) là số tạp chí TH&TT; \(y\) là số tạp chí Pi \(\left( {x,\,\,y \in {\mathbb{N}^{\rm{*}}}} \right)\).

Theo đề bài ta có hệ bất phương trình sau:

\(\left\{ {\begin{array}{*{20}{l}}{x > y}\\{x + 2y > 54}\\{2x + y < 57}\end{array}} \right.\) nên \[\left\{ {\begin{array}{*{20}{l}}{x > y}\\{ - x + y >  - 3}\end{array}} \right.\] hay \[\left\{ {\begin{array}{*{20}{l}}{x - y > 0}\\{x - y < 3}\end{array}} \right.\] suy ra \(0 < x - y < 3.\)

Vì \(x,\,\,y \in {\mathbb{N}^{\rm{*}}}\) nên \(x - y = 1\) hoặc \(x - y = 2.\)

– Trường hợp 1: \(x - y = 1\) hay \(x = y + 1\).

Từ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y > 54}\\{2x + y < 57}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{y + 1 + 2y > 54}\\{2\left( {y + 1} \right) + y < 57}\end{array}} \right.\) nên \(\left\{ {\begin{array}{*{20}{l}}{y > \frac{{53}}{3}}\\{y < \frac{{55}}{3}}\end{array}} \right.\), suy ra \(\frac{{53}}{3} < y < \frac{{55}}{3}.\)

Do đó \(y = 18\) suy ra \(x = 19\).

– Trường hợp 2: \(x - y = 2\) hay \(x = y + 2\)

Từ \(\left\{ {\begin{array}{*{20}{l}}{x + 2y > 54}\\{2x + y < 57}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{y + 2 + 2y > 54}\\{2\left( {y + 2} \right) + y < 57}\end{array}} \right.\) nên \(\left\{ {\begin{array}{*{20}{l}}{y > 17}\\{y < \frac{{53}}{3}}\end{array}} \right.\) (không có số tự nhiên \(y\) thỏa mãn).
Vậy có 19 cuốn tạp chí TH&TT và 18 cuốn tạp chí Pi.


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương