IMG-LOGO
Trang chủ Lớp 9 Toán Ôn thi Cấp tốc 789+ vào 10 môn Toán khu vực Thanh Hóa 2024 - 2025 (Đề 18)

Ôn thi Cấp tốc 789+ vào 10 môn Toán khu vực Thanh Hóa 2024 - 2025 (Đề 18)

Ôn thi Cấp tốc 789+ vào 10 môn Toán khu vực Thanh Hóa 2024 - 2025 (Đề 18)

  • 45 lượt thi

  • 5 câu hỏi

  • 50 phút

Danh sách câu hỏi

Câu 1:

Cho biểu thức \(P = \frac{{\sqrt x  + 1}}{{\sqrt x  - 1}} + \frac{{2\sqrt x  + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\) với \(x > 0,x \ne 1.\)

1) Rút gọn biểu thức \(P.\)

2) Tìm tất cả các giá trị của \(x\) để \(P < 0.\)
Xem đáp án

1) Với \(x > 0,\,\,x \ne 1\) ta có:

\(P = \frac{{\sqrt x  + 1}}{{\sqrt x  - 1}} + \frac{{2\sqrt x  + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\)

\( = \frac{{\left( {\sqrt x  + 1} \right)\sqrt x }}{{\left( {\sqrt x  - 1} \right)\sqrt x }} + \frac{{2\sqrt x  + 1}}{{\sqrt x \left( {\sqrt x  - 1} \right)}} + \frac{{\sqrt x  - 1}}{{\sqrt x \left( {\sqrt x  - 1} \right)}}\)

\( = \frac{{x + \sqrt x  + 2\sqrt x  + 1 + \sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\sqrt x }}\)\( = \frac{{x + 4\sqrt x }}{{\sqrt x \left( {\sqrt x  - 1} \right)}}\)

\( = \frac{{\sqrt x \left( {\sqrt x  + 4} \right)}}{{\sqrt x \left( {\sqrt x  - 1} \right)}} = \frac{{\sqrt x  + 4}}{{\sqrt x  - 1}}.\)

Vậy với \(x > 0,\,\,x \ne 1\) thì \(P = \frac{{\sqrt x  + 4}}{{\sqrt x  - 1}}.\)

2) Với \(x > 0,\,\,x \ne 1\) ta có: \(P < 0\) tức là \(\frac{{\sqrt x  + 4}}{{\sqrt x  - 1}} < 0\) suy ra \(\sqrt x  - 1 < 0\) (vì \(\sqrt x  + 4 > 0)\)

Do đó \(\sqrt x  < 1\) hay \(x < 1.\)

Kết hợp với điều kiện \(x > 0,\,\,x \ne 1\) ta có \(0 < x < 1.\)


Câu 2:

1) Trong mặt phẳng tọa độ \[Oxy,\] cho hai đường thẳng \(\left( d \right):y = \left( {{m^2} - 3} \right)x + 3\) và \(\left( {d'} \right):y = 6x + m.\) Tìm tất cả các giá trị của \[m\] để hai đường thẳng trên song song với nhau.

2) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 5y =  - 7\\x - 4y = 11.\end{array} \right.\)
Xem đáp án

1) Để \[\left( d \right)\,{\rm{//}}\,\left( {d'} \right)\] thì \(\left\{ \begin{array}{l}{m^2} - 3 = 6\\m \ne 3\end{array} \right.\) hay\(\left\{ \begin{array}{l}{m^2} = 9\\m \ne 3\end{array} \right.\) suy ra \(m =  - 3.\)

Vậy với \(m =  - 3\) thì hai đường thẳng đã cho song song với nhau.

2) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 5y =  - 7\\x - 4y = 11.\end{array} \right.\)

Trừ từng vế hai phương trình thứ nhất và thứ hai của hệ phương trình, ta được:

\(9y =  - 18,\) suy ra \(y =  - 2.\)

Thay \(y =  - 2\) vào phương trình \(x + 5y =  - 7,\) ta được:

\(x + 5 \cdot \left( { - 2} \right) =  - 7,\) suy ra \(x = 3.\)

Vậy hệ phương trình có nghiệm duy nhất là \[\left( {x;{\rm{ }}y} \right) = \left( {3;\,\, - 2} \right).\]


Câu 3:

1) Giải phương trình \({x^2} + 6x + 5 = 0.\)

2) Cho phương trình \({x^2} - x + 4m + 2 = 0\) \[(m\] là tham số). Tìm các giá trị của \[m\] để phương trình có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn hệ thức \({x_1}^2 - 4{x_1}{x_2} + 3{x_2}^2 = 5\left( {{x_1} - {x_2}} \right).\)
 
Xem đáp án

1) Xét phương trình \({x^2} + 6x + 5 = 0\)

Phương trình trên có \(a - b + c = 1 - 6 + 5 = 0\) nên phương trình này có hai nghiệm là \({x_1} =  - 1;\,\,{x_2} =  - 5.\)

Vậy phương trình có nghiệm là \({x_1} =  - 1;\,\,{x_2} =  - 5.\)

2) Xét phương trình \({x^2} - x + 4m + 2 = 0\)

Phương trình trên có \(\Delta  = {\left( { - 1} \right)^2} - 4 \cdot \left( {4m + 2} \right) = 1 - 16m - 8 =  - 16m - 7.\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta  > 0,\) tức là \( - 16m - 7 > 0,\) suy ra \(m < \frac{{ - 7}}{{16}}.\)

Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 1\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{x_1}{x_2} = 4m + 2\,\,\,\,\left( 2 \right)\end{array} \right.\)

Theo bài, \({x_1}^2 - 4{x_1}{x_2} + 3{x_2}^2 = 5\left( {{x_1} - {x_2}} \right)\)

\({x_1}^2 - {x_1}{x_2} - 3{x_1}{x_2} + 3{x_2}^2 = 5\left( {{x_1} - {x_2}} \right)\)

\({x_1}\left( {{x_1} - {x_2}} \right) - 3{x_2}\left( {{x_1} - {x_2}} \right) - 5\left( {{x_1} - {x_2}} \right) = 0\)

\(\left( {{x_1} - {x_2}} \right)\left( {{x_1} - 3{x_2} - 5} \right) = 0\)

 \({x_1} = {x_2}\) (loại do \({x_1} \ne {x_2})\) hoặc \({x_1} - 3{x_2} = 5.\)

Từ \({x_1} - 3{x_2} = 5,\) suy ra \({x_1} = 3{x_2} + 5,\) thay vào \(\left( 1 \right),\) ta được:

\(3{x_2} + 5 + {x_2} = 1,\) suy ra \(4{x_2} =  - 4,\) nên \({x_2} =  - 1.\)

Thay \({x_2} =  - 1\) vào \({x_1} = 3{x_2} + 5,\) ta được: \[{x_1} = 3 \cdot \left( { - 1} \right) + 5 = 2.\]

Thay \({x_1} = 2,\,\,{x_2} =  - 1\) vào \(\left( 2 \right),\) ta được:

\(2 \cdot \left( { - 1} \right) = 4m + 2,\) suy ra \(m =  - 1\) (thỏa mãn điều kiện).

Vậy \(m =  - 1\) thỏa mãn yêu cầu bài toán.

 

Câu 4:

Cho tam giác \[ABC\] cân tại \[A.\] Gọi \[O\] là trung điểm của cạnh \[BC.\] Đường tròn \[\left( O \right)\] tiếp xúc với \[AB\] tại \[E,\] tiếp xúc với \[AC\] tại \[F.\] Điểm \[H\] di động trên cung nhỏ  của đường tròn \[\left( O \right);\] tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H\] cắt \[AB,{\rm{ }}AC\] lần lượt tại \[I,{\rm{ }}K.\]

1) Chứng minh \[AEOF\] là tứ giác nội tiếp.

2) Chứng minh \(\widehat {IOK} = \widehat {ABC}\) và hai tam giác \[OIB,\,\,KOC\] đồng dạng.

3) Giả sử \[AB = 5\] cm, \[BC = 6\] cm. Tìm giá trị lớn nhất của diện tích tam giác \[AIK.\]
Xem đáp án
Cho tam giác ABC cân tại A Gọi O là trung điểm của cạnh BC Đường tròn O tiếp xúc với AB tại E tiếp xúc với AC tại  (ảnh 1)

Do đó \(\widehat {IOK} = \widehat {IOH} + \widehat {HOK} = \frac{1}{2}\left( {\widehat {EOH} + \widehat {HOF}} \right) = \frac{1}{2}\widehat {EOF}.\,\,\,\left( 1 \right)\)

Do \[AEOF\] là tứ giác nội tiếp nên \(\widehat {EAF} + \widehat {EOF} = 180^\circ ,\) suy ra \(\widehat {EAF} = 180^\circ  - \widehat {EOF}.\)

Mặt khác, \(\Delta ABC\) cân tại \(A\) nên \(\widehat {ACB} = \frac{{180^\circ  - \widehat {BAC}}}{2} = \frac{{180^\circ  - \left( {180^\circ  - \widehat {EOF}} \right)}}{2} = \frac{1}{2}\widehat {EOF}.\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \[\widehat {ACB} = \widehat {IOK}.\]

Ta có: \(\widehat {IOK} + \widehat {IOB} + \widehat {KOC} = 180^\circ ;\)

 \(\widehat {ACB} + \widehat {CKO} + \widehat {KOC} = 180^\circ \)

Suy ra \[\widehat {IOB} = \widehat {CKO}.\] Kết hợp \(\widehat {OBI} = \widehat {OCK}\) ta chứng minh được  (g.g).

3) Vì \(O\) là trung điểm của \(BC\) nên \(OB = OC = \frac{{BC}}{2} = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\)

Vì \(\Delta ABC\) cân tại \(A\) nên đường trung tuyến \(AO\) đồng thời là đường cao và đường phân giác của tam giác.

Xét \(\Delta ABO\) vuông tại \(O,\) ta có \(A{B^2} = A{O^2} + B{O^2}\) (định lí Pythagore)

Suy ra \(AO = \sqrt {A{B^2} - O{B^2}}  = \sqrt {{5^2} - {3^2}}  = \sqrt {16}  = 4{\rm{\;(cm)}}{\rm{.}}\)

Xét \(\Delta OBE\) và \(\Delta ABO\) có: \(\widehat {ABO}\) là góc chung và \(\widehat {BEO} = \widehat {BOA} = 90^\circ .\)

Do đó  (g.g), suy ra \(\frac{{OB}}{{AB}} = \frac{{BE}}{{BO}} = \frac{{OE}}{{AO}}\)

Nên \(O{B^2} = AB \cdot BE\) và \(OE \cdot AB = OB \cdot OA.\)

Từ đó, ta có \(BE = \frac{{O{B^2}}}{{AB}} = \frac{{{3^2}}}{5} = 1,8{\rm{\;(cm)}}\) và \(OE = \frac{{OB \cdot OA}}{{AB}} = \frac{{3 \cdot 4}}{5} = 2,4{\rm{\;(cm)}}{\rm{.}}\)

Theo câu 2,  suy ra \(\frac{{OB}}{{KC}} = \frac{{BI}}{{CO}}\) hay \(KC \cdot BI = OB \cdot OC = O{B^2}.\)

Ta có: \({S_{AIK}} = {S_{ABC}} - {S_{BIKC}}\) nên \({S_{AIK}}\) lớn nhất khi \({S_{BIKC}}\) nhỏ nhất.

Gọi \(R\) là bán kính đường tròn \(\left( O \right).\) Khi đó \(R = OE = 2,4{\rm{\;cm}}.\)

Ta có: \({S_{BIKC}} = {S_{BOI}} + {S_{IOK}} + {S_{KOC}} = \frac{1}{2}\left( {OE \cdot BI + OH \cdot IK + OF \cdot KC} \right)\)

 \( = \frac{1}{2}R \cdot \left( {BI + IK + KC} \right)\)\( = \frac{1}{2}R\left( {BI + IH + HK + KC} \right)\)

 \( = \frac{1}{2}R\left( {BI + CK + IE + KF} \right)\)\( = \frac{1}{2}R\left( {2BI + 2CK - BE - CF} \right)\)

 \( = \frac{1}{2}R\left( {2BI + 2CK - 2BE} \right)\)\( = R\left( {BI + CK - BE} \right)\)

 \( \le R \cdot \left( {2\sqrt {BI \cdot CK}  - BE} \right) = R \cdot \left( {2\sqrt {O{B^2}}  - BE} \right) = R \cdot \left( {2OB - BE} \right)\)

\( = 2,4 \cdot \left( {2 \cdot 3 - 1,8} \right) = 10,08{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Lại có \({S_{ABC}} = \frac{1}{2}AO \cdot BC = \frac{1}{2} \cdot 4 \cdot 6 = 12{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Do đó \({S_{AIK}} \le 12 - 10,08 = 1,92{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Dấu “=” xảy ra khi \[BI = CK\] hay \[AI = AK,\] tức là \(\Delta AIK\) cân tại \(A\) nên đường phân giác \(AO\) của tam giác này đồng thời là đường cao, tức \(AO \bot IK,\) mà \(OH \bot IK\) nên \(OH\) trùng \(OA,\) hay \(H\) là điểm chính giữa cung \[EF.\]

Vậy giá trị lớn nhất của diện tích tam giác \[AIK\] bằng \(1,92\) cm2 khi \(H\) là điểm chính giữa cung \[EF.\]

 

Câu 5:

Cho các số thực dương \[a,{\rm{ }}b,{\rm{ }}c\] thỏa mãn \[abc = 1.\] Tìm giá trị nhỏ nhất của biểu thức

\(P = \frac{{{a^4}\left( {{b^2} + {c^2}} \right)}}{{{b^3} + 2{c^3}}} + \frac{{{b^4}\left( {{c^2} + {a^2}} \right)}}{{{c^3} + 2{a^3}}} + \frac{{{c^4}\left( {{a^2} + {b^2}} \right)}}{{{a^3} + 2{b^3}}}.\)

Xem đáp án

Áp dụng bất đẳng thức Cauchy cho các số thực dương \[a,{\rm{ }}b,{\rm{ }}c\] và \[abc = 1,\] ta có:

          \({a^4}\left( {{b^2} + {c^2}} \right) = {a^2}\left( {{a^2}{b^2} + {a^2}{c^2}} \right) \ge {a^2} \cdot 2\sqrt {{a^4}{b^2}{c^2}}  = 2{a^3}.\)

Chứng minh tương tự, ta được \({b^4}\left( {{c^2} + {a^2}} \right) \ge 2{b^3};\,\,\,{c^4}\left( {{a^2} + {b^2}} \right) \ge 2{c^3}.\)

Khi đó ta được:

          \(P = \frac{{{a^4}\left( {{b^2} + {c^2}} \right)}}{{{b^3} + 2{c^3}}} + \frac{{{b^4}\left( {{c^2} + {a^2}} \right)}}{{{c^3} + 2{a^3}}} + \frac{{{c^4}\left( {{a^2} + {b^2}} \right)}}{{{a^3} + 2{b^3}}}\)\( \ge \frac{{2{a^3}}}{{{b^3} + 2{c^3}}} + \frac{{2{b^3}}}{{{c^3} + 2{a^3}}} + \frac{{2{c^3}}}{{{a^3} + 2{b^3}}}\)

Đặt \(M = \frac{{2{a^3}}}{{{b^3} + 2{c^3}}} + \frac{{2{b^3}}}{{{c^3} + 2{a^3}}} + \frac{{2{c^3}}}{{{a^3} + 2{b^3}}}\) và \(\left\{ \begin{array}{l}x = {b^3} + 2{c^3}\\y = {c^3} + 2{a^3}\\z = {a^3} + 2{b^3}.\end{array} \right.\)

Khi đó ta được \(\left\{ \begin{array}{l}{b^3} = \frac{{x - 2y + 4z}}{9}\\{c^3} = \frac{{y - 2z + 4x}}{9}\\{a^3} = \frac{{z - 2x + 4y}}{9}\end{array} \right.\)

Suy ra \(M = \frac{{2\left( {z - 2x + 4y} \right)}}{{9x}} + \frac{{2\left( {x - 2y + 4z} \right)}}{{9y}} + \frac{{2\left( {y - 2z + 4x} \right)}}{{9z}}\)

\( = \frac{2}{9}\left[ {\left( {\frac{z}{x} + \frac{x}{y} + \frac{y}{z}} \right) + 4\left( {\frac{y}{x} + \frac{z}{y} + \frac{x}{z}} \right) - 6} \right]\)

Áp dụng bất đẳng thức Cauchy với 3 số dương ta có:

                    \(\frac{z}{x} + \frac{x}{y} + \frac{y}{z} \ge 3 \cdot \sqrt[3]{{\frac{z}{x} \cdot \frac{x}{y} \cdot \frac{y}{z}}} = 3;\)

                    \(\frac{y}{x} + \frac{z}{y} + \frac{x}{z} \ge 3 \cdot \sqrt[3]{{\frac{y}{x} \cdot \frac{z}{y} \cdot \frac{x}{z}}} = 3.\)

Khi đó ta được: \(P \ge M = \frac{2}{9}\left[ {\left( {\frac{z}{x} + \frac{x}{y} + \frac{y}{z}} \right) + 4\left( {\frac{y}{x} + \frac{z}{y} + \frac{x}{z}} \right) - 6} \right] \ge \frac{2}{9}\left( {3 + 4 \cdot 3 - 6} \right) = 2.\)

Đẳng thức xảy ra khi và chỉ khi \[a = b = c = 1.\]

Vậy giá trị nhỏ nhất của biểu thức \(P\) là \[2\] khi \[a = b = c = 1.\]


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương