1) Giải phương trình \({x^2} + 6x + 5 = 0.\)
1) Xét phương trình \({x^2} + 6x + 5 = 0\)
Phương trình trên có \(a - b + c = 1 - 6 + 5 = 0\) nên phương trình này có hai nghiệm là \({x_1} = - 1;\,\,{x_2} = - 5.\)
Vậy phương trình có nghiệm là \({x_1} = - 1;\,\,{x_2} = - 5.\)
2) Xét phương trình \({x^2} - x + 4m + 2 = 0\)
Phương trình trên có \(\Delta = {\left( { - 1} \right)^2} - 4 \cdot \left( {4m + 2} \right) = 1 - 16m - 8 = - 16m - 7.\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta > 0,\) tức là \( - 16m - 7 > 0,\) suy ra \(m < \frac{{ - 7}}{{16}}.\)
Theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 1\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{x_1}{x_2} = 4m + 2\,\,\,\,\left( 2 \right)\end{array} \right.\)
Theo bài, \({x_1}^2 - 4{x_1}{x_2} + 3{x_2}^2 = 5\left( {{x_1} - {x_2}} \right)\)
\({x_1}^2 - {x_1}{x_2} - 3{x_1}{x_2} + 3{x_2}^2 = 5\left( {{x_1} - {x_2}} \right)\)
\({x_1}\left( {{x_1} - {x_2}} \right) - 3{x_2}\left( {{x_1} - {x_2}} \right) - 5\left( {{x_1} - {x_2}} \right) = 0\)
\(\left( {{x_1} - {x_2}} \right)\left( {{x_1} - 3{x_2} - 5} \right) = 0\)
\({x_1} = {x_2}\) (loại do \({x_1} \ne {x_2})\) hoặc \({x_1} - 3{x_2} = 5.\)
Từ \({x_1} - 3{x_2} = 5,\) suy ra \({x_1} = 3{x_2} + 5,\) thay vào \(\left( 1 \right),\) ta được:
\(3{x_2} + 5 + {x_2} = 1,\) suy ra \(4{x_2} = - 4,\) nên \({x_2} = - 1.\)
Thay \({x_2} = - 1\) vào \({x_1} = 3{x_2} + 5,\) ta được: \[{x_1} = 3 \cdot \left( { - 1} \right) + 5 = 2.\]
Thay \({x_1} = 2,\,\,{x_2} = - 1\) vào \(\left( 2 \right),\) ta được:
\(2 \cdot \left( { - 1} \right) = 4m + 2,\) suy ra \(m = - 1\) (thỏa mãn điều kiện).
Vậy \(m = - 1\) thỏa mãn yêu cầu bài toán.
Cho tam giác \[ABC\] cân tại \[A.\] Gọi \[O\] là trung điểm của cạnh \[BC.\] Đường tròn \[\left( O \right)\] tiếp xúc với \[AB\] tại \[E,\] tiếp xúc với \[AC\] tại \[F.\] Điểm \[H\] di động trên cung nhỏ của đường tròn \[\left( O \right);\] tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H\] cắt \[AB,{\rm{ }}AC\] lần lượt tại \[I,{\rm{ }}K.\]
1) Chứng minh \[AEOF\] là tứ giác nội tiếp.
2) Chứng minh \(\widehat {IOK} = \widehat {ABC}\) và hai tam giác \[OIB,\,\,KOC\] đồng dạng.
1) Trong mặt phẳng tọa độ \[Oxy,\] cho hai đường thẳng \(\left( d \right):y = \left( {{m^2} - 3} \right)x + 3\) và \(\left( {d'} \right):y = 6x + m.\) Tìm tất cả các giá trị của \[m\] để hai đường thẳng trên song song với nhau.
Cho các số thực dương \[a,{\rm{ }}b,{\rm{ }}c\] thỏa mãn \[abc = 1.\] Tìm giá trị nhỏ nhất của biểu thức
\(P = \frac{{{a^4}\left( {{b^2} + {c^2}} \right)}}{{{b^3} + 2{c^3}}} + \frac{{{b^4}\left( {{c^2} + {a^2}} \right)}}{{{c^3} + 2{a^3}}} + \frac{{{c^4}\left( {{a^2} + {b^2}} \right)}}{{{a^3} + 2{b^3}}}.\)
Cho biểu thức \(P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{2\sqrt x + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\) với \(x > 0,x \ne 1.\)
1) Rút gọn biểu thức \(P.\)