Cho biểu thức \(P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{2\sqrt x + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\) với \(x > 0,x \ne 1.\)
1) Rút gọn biểu thức \(P.\)
1) Với \(x > 0,\,\,x \ne 1\) ta có:
\(P = \frac{{\sqrt x + 1}}{{\sqrt x - 1}} + \frac{{2\sqrt x + 1}}{{x - \sqrt x }} + \frac{1}{{\sqrt x }}\)
\( = \frac{{\left( {\sqrt x + 1} \right)\sqrt x }}{{\left( {\sqrt x - 1} \right)\sqrt x }} + \frac{{2\sqrt x + 1}}{{\sqrt x \left( {\sqrt x - 1} \right)}} + \frac{{\sqrt x - 1}}{{\sqrt x \left( {\sqrt x - 1} \right)}}\)
\( = \frac{{x + \sqrt x + 2\sqrt x + 1 + \sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\sqrt x }}\)\( = \frac{{x + 4\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}\)
\( = \frac{{\sqrt x \left( {\sqrt x + 4} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}} = \frac{{\sqrt x + 4}}{{\sqrt x - 1}}.\)
Vậy với \(x > 0,\,\,x \ne 1\) thì \(P = \frac{{\sqrt x + 4}}{{\sqrt x - 1}}.\)
2) Với \(x > 0,\,\,x \ne 1\) ta có: \(P < 0\) tức là \(\frac{{\sqrt x + 4}}{{\sqrt x - 1}} < 0\) suy ra \(\sqrt x - 1 < 0\) (vì \(\sqrt x + 4 > 0)\)
Do đó \(\sqrt x < 1\) hay \(x < 1.\)
Kết hợp với điều kiện \(x > 0,\,\,x \ne 1\) ta có \(0 < x < 1.\)
1) Trong mặt phẳng tọa độ \[Oxy,\] cho hai đường thẳng \(\left( d \right):y = \left( {{m^2} - 3} \right)x + 3\) và \(\left( {d'} \right):y = 6x + m.\) Tìm tất cả các giá trị của \[m\] để hai đường thẳng trên song song với nhau.
Cho các số thực dương \[a,{\rm{ }}b,{\rm{ }}c\] thỏa mãn \[abc = 1.\] Tìm giá trị nhỏ nhất của biểu thức
\(P = \frac{{{a^4}\left( {{b^2} + {c^2}} \right)}}{{{b^3} + 2{c^3}}} + \frac{{{b^4}\left( {{c^2} + {a^2}} \right)}}{{{c^3} + 2{a^3}}} + \frac{{{c^4}\left( {{a^2} + {b^2}} \right)}}{{{a^3} + 2{b^3}}}.\)
Cho tam giác \[ABC\] cân tại \[A.\] Gọi \[O\] là trung điểm của cạnh \[BC.\] Đường tròn \[\left( O \right)\] tiếp xúc với \[AB\] tại \[E,\] tiếp xúc với \[AC\] tại \[F.\] Điểm \[H\] di động trên cung nhỏ của đường tròn \[\left( O \right);\] tiếp tuyến của đường tròn \[\left( O \right)\] tại \[H\] cắt \[AB,{\rm{ }}AC\] lần lượt tại \[I,{\rm{ }}K.\]
1) Chứng minh \[AEOF\] là tứ giác nội tiếp.
2) Chứng minh \(\widehat {IOK} = \widehat {ABC}\) và hai tam giác \[OIB,\,\,KOC\] đồng dạng.
1) Giải phương trình \({x^2} + 6x + 5 = 0.\)