Cho \[\Delta ABC\] vuông tại \[A\], \(\widehat {BAC} = 90^\circ \,\,\left( {AB{\rm{ }} \le {\rm{ }}AC} \right)\). Đường tròn \[\left( I \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[BC\] tại \[D\]. Kết quả nào sau đây là đúng?
A. \(BD = \frac{{BC + AB - AC}}{2}\).
B. \(BC = \frac{{BD + AB - AC}}{2}\).
C. \(BD = \frac{{BC + AB + AC}}{2}\).
D. \(BD = \frac{{BC - AB + AC}}{2}\).
Đáp án đúng là: A
Gọi \[E,{\rm{ }}F\] là tiếp điểm của đường tròn \[\left( I \right)\] với các cạnh \[AB,{\rm{ }}AC\].
Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \[AE = AF;{\rm{ }}BE = BD;\,\,CD = CF\].
Do đó \[2BD = BD + BE\]\[ = BC--CD + AB--AE\]
\[ = BC + AB--\left( {CD + AE} \right)\]\[ = BC + AB--\left( {CF + AF} \right)\]
\[ = BC + AB--AC\].
Suy ra \[BD = \frac{{BC + AB - AC}}{2}\].
II. Thông hiểu
Đường tròn nội tiếp hình vuông cạnh \[a\] có bán kính là
Độ dài cạnh của tam giác đều nội tiếp \[\left( {O;{\rm{ }}R} \right)\] theo \[R\] là
Diện tích tam giác đều nội tiếp đường tròn \(\left( {O\,;\,\,2\,\,{\rm{cm}}} \right)\) là
Cho tam giác \[ABC\] vuông tại \[A\], có \[AB = 5\,\,{\rm{cm}}\]; \[AC = 12\,\,{\rm{cm}}\]. Bán kính đường tròn ngoại tiếp tam giác \[ABC\] là
Cho \[\left( {O;{\rm{ }}4} \right)\] có dây \[AC\] bằng cạnh hình vuông nội tiếp và dây \[BC\] bằng cạnh tam giác đều nội tiếp đường tròn đó (điểm \[C\] và \[A\] nằm cùng phía với \[BO\]). Số đo góc \[ACB\] là
Cho \[\Delta ABC\] vuông tại \[A\], có \[AB = 6{\rm{ cm}}\] và \[AC = 8{\rm{ cm}}\] ngoại tiếp đường tròn \[\left( {I;{\rm{ }}r} \right)\]. Bán kính \[r\] của đường tròn là
Cho tam giác \[ABC\] có \[AB = 6\,\,{\rm{cm}}\]; \[BC = 10{\rm{ cm}}\] và \[AC = 8\,\,{\rm{cm}}\]. Bán kính đường tròn ngoại tiếp tam giác \[ABC\] là
III. Vận dụng
Cho \[\Delta ABC\] cân tại \[A\] nội tiếp đường tròn \[\left( O \right)\]. Gọi \[E,{\rm{ }}F\] theo thứ tự là hình chiếu của \[\left( O \right)\] lên \[AB\] và \[AC\]. Khẳng định nào sau đây là đúng?
Tam giác \[ABC\] vuông tại \[A\] có đường cao \[AH = \frac{{12}}{5}\] cm và \(\frac{{AB}}{{AC}} = \frac{3}{4}\). Bán kính \[R\] của đường tròn ngoại tiếp tam giác \[ABC\] là