Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm
A. \[A\].
B. \[B\].
C. \[D\].
D. \[E\].
Đáp án đúng là: B
Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì các điểm \[B,{\rm{ }}C,{\rm{ }}D,{\rm{ }}E\] tương ứng biến thành các điểm \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D\].
Cho các hình: Hình chữ nhật, hình thoi, hình vuông, tam giác cân, tam giác đều.
Trong các hình trên, có bao nhiêu đa giác giác đều?
I. Thông hiểu
Mỗi góc của bát giác đều nội tiếp đường tròn tâm \[O\] có số đo là
Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành
I. Nhận biết
Cho các hình dưới đây:
Trong các hình trên, hình nào có dạng là đa giác đều?
Với một phép quay góc \(\alpha \) thì \(\alpha \) có thể nhận các giá trị:
Cho đa giác đều 11 cạnh có độ dài mỗi cạnh là \(5{\rm{ cm}}\). Chu vi đa giác đều này là
Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là
Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là
III. Vận dụng
Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai?
Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ).
Số đo góc \(BAC\) là
Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào?