Gọi là điểm cực đại, là điểm cực tiểu của hàm số . Giá trị của biểu thức bằng
A. -1
B. 0
C. 1
D. 2
Từ đó suy ra hàm số đạt cực tiểu tại = 1, đạt cực đại tại = -1
Suy ra = -1
Chọn A.
Một nhóm học sinh gồm 6 bạn nam và 4 bạn nữ đứng ngẫu nhiên thành một hàng. Xác suất để có đúng 2 trong 4 bạn nữ đứng cạnh nhau là
Một du khách vào trường đua ngựa đặt cược, lần đầu đặt 20000 đồng, mỗi lần sau tiền đặt gấp đôi lần tiền đặt cọc trước. Người đó thua 9 lần liên tiếp và thắng ở lần thứ 10. Hỏi du khác trên thắng hay thua bao nhiêu tiền?
Từ một tấm tôn hình chữ nhật người ta cuộn thành một chiếc thùng hình trụ không đáy (như hình vẽ). Biết tấm tôn có chu vi bằng 120 cm. Để chiếc thùng có thể tích lớn nhất thì chiều dài, chiều rộng của tấm tôn lần lượt là
Trong không gian với hệ tọa độ Oxyz cho S(-1;6;2), A(0;0;6), B(0;3;0), C(-2;0;0). Gọi H là chân đường cao vẽ từ S của tứ diện. Phương trình nào dưới đây là phương trình mặt phẳng (SBH) ?
Cho hình hộp chữ nhật có . Gọi M là trung điểm cạnh AB. Khoảng cách từ D đến mặt phẳng (B'MC) bằng
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC có . Trung điểm cạnh AC thuộc trục tung, trung điểm cạnh BC thuộc mặt phẳng . Tọa độ đỉnh C là
Cho tam giác OAB đều cạnh a. Trên đường thẳng d qua O và vuông góc với mặt phẳng (OAB) lấy điểm M sao cho . Gọi E, F lần lượt là hình chiếu vuông góc của A trên MB và OB. Gọi N là giao điểm của EF và d. Tìm x để thể tích tứ diện ABMN có giá trị nhỏ nhất.
Tìm số nguyên dương n thỏa mãn , với là số các hoán vị của tập hợp có n phần tử.
Một chiếc cổng có hình dạng là một Parabol có khoảng cách giữa hai chân cổng là AB= 8m. Người ra treo một tâm phông hình chữ nhật có hai đỉnh M, N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất (như hình vẽ). Ở phần phía ngoài phông (phần không tô đen) người ta mua hoa để trang trí với chi phí cho 1 cần số tiền mua hoa là 200.000 đồng, biết . Hỏi số tiền dùng để mua hoa trang trí chiếc cổng gần với số tiền nào sau đây?
Trong mặt phẳng Oxy, cho điểm M trong hình vẽ bên là điểm biểu diễn số phức z. Mệnh đề nào sau đây là sai ?
Cho đa giác có 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng
Cho hàm số có đồ thị (C) và điểm . Tập hợp tất cả các giá trị m để từ điểm A kẻ được duy nhất một tiếp tuyến đến (C) là tập . Tính
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng a. Gọi M, N lần lượt là trung điểm các cạnh AB, B'C'. Côsin góc giữa hai đường thẳng MN và AC bằng
Để tính diện tích xung quanh của một khối cầu bằng đá, người ta thả nó vào trong một chiếc thùng hình trụ có chiều cao , bán kính đường tròn đáy bằng và chứa một lượng nước có thể tích bằng thể tích khối trụ. Sau khi thả khối cầu đá vào khối trụ người ta đo được mực nước trong khối trụ cao gấp ba lần mực nước ban đầu khi chưa thả khối cầu. Hỏi diện tích xung quanh của khối cầu gần bằng kết quả nào được cho dưới đây ?