Hàm số nào sau đây không có điểm cực trị?
A.
B.
C.
D.
Chọn A.
Phương pháp:
Giải phương trình và kết luận.
Cách giải:
Xét đáp án A ta có Hàm số không có cực trị.
Cho tứ diện ABCD, gọi lần lượt là trọng tâm các tam giác BCD và ACD . Mệnh đề nào sau đây SAI?
Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABCD có AB và CD thuộc hai đáy của hình trụ, AB = 4a, AC = 5a. Thể tích khối trụ là
Cho hàm số có đồ thị C. Gọi S là tập các giá trị của m sao cho đồ thị C có đúng một tiếp tuyến song song với trục Ox. Tổng tất cả các phần tử của S là
Cho hình chóp S.ABC có ba cạnh OA, OB, OC đôi một vuông góc và OA = OB = OC = a. Gọi M là trung điểm cạnh AB. Góc hợp bởi hai véc tơ và bằng
Cho tứ diện SABC và G là trọng tâm của tứ diện, mặt phẳng quay quanh AG và cắt các cạnh SB, SC tương ứng tại M, N. Giá trị nhỏ nhất của tỉ số là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với mặt phẳng ABC và AB = 2, AC = 4, . Mặt cầu đi qua các đỉnh của hình chóp S.ABC có bán kính
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và . Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABC. Gọi là goc giữa đường thẳng SB và mặt phẳng (SCD), tính biết rằng SB = a.
Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là
Cho hình chóp đều .S ABCD có cạnh AB = a, góc giữa đường thẳng SA và mặt phẳng ABC bằng . Thể tích khối chóp S.ABCD là
Cho phương trình . Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn là khoảng . Khi đó, a thuộc khoảng
Cho hàm số . Có bao nhiêu giá trị nguyên thuộc đoạn [-6;6] của tham số m để đồ thị hàm số có bốn đường tiệm cận?
Thiết diện của hình trụ và mặt phẳng chứa trục của hình trụ là hình chữ nhật có chu vi là 12cm. Giá trị lớn nhất của thể tích khối trụ là