Ông A dự định sử dụng hết kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)
A.
B.
C.
D
Chọn đáp án B
Phương pháp
Sử dụng công thức tính diện tích toàn phần hình hộp và công thức tính thể tích hình hộp V=abc (với a, b, c là ba kích thước của hình chữ nhật)
Sử dụng các dữ kiện đề bài và sử dụng hàm số để tính giá trị lớn nhất của thể tích.
Cách giải
Gọi chiều dài, chiều rộng và chiều cao của bể cá lần lượt là a,b,c (a,b,c>0)
Theo đề bài ta có a=2b.
Vì ông A sử dụng kính để làm bể cá không nắp nên diện tích toàn phần (bỏ 1 mặt đáy) của hình hộp là
Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số cắt trục hoành tại ba điểm phân biệt
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC=2a, SA vuông góc với mặt phẳng đáy và . Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng
Cho x, y là các số thực thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức P=2x-y
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2y+2z-2=0 và điểm I(-1;2;-1). Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5
Cho hình H là đa giác đều có 24 đỉnh. Chọn ngẫu nhiên 4 đỉnh của H. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
Cho hàm số y=f(x). Đồ thị hàm số y=f’(x) như hình vẽ. Đặt , với m là tham số thực. Điều kiện cần và đủ để bất phương trình g(x)≥0 nghiệm đúng với là
Cho một hình trụ có chiều cao bằng 2 và bán kính đáy bằng 3. Thể tích khối trụ đã cho bằng
Gọi S là tập hợp các giá trị thực của tham số m sao cho phương trình có đúng hai nghiệm thực. Tính tổng các phần tử của S
Cho hai hàm số (với a, b là hai số thực dương khác 1) có đồ thị lần lượt là như hình vẽ. Khẳng định nào sau đây đúng?
Cho đồ thị y=f(x) như hình vẽ sau đây. Biết rằng và . Tính diện tích S của phần hình phẳng được tô đậm
Trong không gian Oxyz, cho hai mặt phẳng (P): x+2y-2z-6=0 và (Q): x+2y-2z+3=0. Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng
Thể tích khối lăng trụ có diện tích đáy là B và chiều cao h được tính bởi công thức
Cho hình chóp S.ABCD đều có AB=2 và . Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng
Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn theo quý (3 tháng), lãi suất 2% một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền (cả vốn lẫn lãi) gần nhất với kết quả nào sau đây