Chọn khẳng định đúng.
A.Hai đường tròn đồng tâm không có một tiếp tuyến chung nào.
B.Hai đường tròn cắt nhau chỉ có một tiếp tuyến chung
C.Hai đường tròn đựng nhau có một tiếp tuyến chung.
D.Hai đường tròn tiếp xúc trong có hai tiếp tuyến chung.
Đáp án là A
Phần trắc nghiệm
Nội dung câu hỏi 1
Cho đường thẳng A và điểm O cách a một khoảng là 2 cm. Vẽ đường tròn tâm O, đường kính 4 cm. Khi đó đường thẳng a:
Phần tự luận
Nội dung câu hỏi 1
Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc (O). Tiếp tuyến tại A của (O) cắt đường thẳng BC tại D. Gọi E là trung điểm của AD.
a) Chứng minh EC là tiếp tuyến của (O)
Cho nửa đường tròn (O) đường kính AB = 2R, N là điểm trên nửa đường tròn. Trên cùng một nửa mặt phẳng bờ AB, vẽ hai tiếp tuyến Ax và By và một tiếp tuyến tại N cắt hai tiếp tuyến Ax và By lần lượt tại C và D.
a) Chứng minh AC + BD = CD và AC.BD không đổi.
Cho tam giác ABC có chu vi bằng 30cm và diện tích bằng 45. Vẽ đường tròn (O) nội tiếp ΔABC. Bán kính của đường tròn đó bằng:
Cho nửa đường tròn (O) đường kính AB = 2R, N là điểm trên nửa đường tròn. Trên cùng một nửa mặt phẳng bờ AB, vẽ hai tiếp tuyến Ax và By và một tiếp tuyến tại N cắt hai tiếp tuyến Ax và By lần lượt tại C và D.
b) Chứng minh AB tiếp xúc với đường tròn đường kính CD.
Chọn câu khẳng định đúng.
Cho đường tròn (O) hai dây AB và CD cắt nhau tại M nằm trong đường tròn. Gọi E và F lần lượt là trung điểm của AB và CD. Cho biết AB < CD. So sánh MF và ME:
Cho hai đường tròn (O;R) và (O’;r) cắt nhau tại hai điểm A và B. Biết OO'=2+2(cm); (AOB) = ; (AO'B) =
Bán kính R, r lần lượt là:
Cho nửa đường tròn (O) đường kính AB = 2R, N là điểm trên nửa đường tròn. Trên cùng một nửa mặt phẳng bờ AB, vẽ hai tiếp tuyến Ax và By và một tiếp tuyến tại N cắt hai tiếp tuyến Ax và By lần lượt tại C và D.
c) Biết AC = R/2. Tính NA và NB.
Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc (O). Tiếp tuyến tại A của (O) cắt đường thẳng BC tại D. Gọi E là trung điểm của AD.
b) Chứng minh EO vuông góc với AC tại trung điểm I của AC.