Phần tự luận
Nội dung câu hỏi 1
Cho biểu thức
a) Rút gọn P
với
Cho hàm số y =(m – 3)x + 2 có đồ thị là (d)
a) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng – 3. Khi đó (d) tạo với trục Ox một góc nhọn hay góc tù. Vì sao?
Cho hàm số y =(m – 3)x + 2 có đồ thị là (d)
c) Tìm m để (d) cắt hai trục tọa độ tạo thành một tam giác có diện tích bằng 4.
Cho nửa đường tròn (O; R) đường kính AB cố định. Trên cùng một nửa mặt phẳng bờ AB chứa đường tròn, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Trên nửa đường tròn, lấy điểm C bất kì. Vẽ tiếp tuyến (O) tại C cắt Ax, By lần lượt tại D và E.
c) Chứng minh rằng OM.OD + ON.OE không đổi
Cho tam giác BDC vuông tại D, ∠B = , BD = 3 cm. Độ dài cạnh DC bằng:
Cho nửa đường tròn (O; R) đường kính AB cố định. Trên cùng một nửa mặt phẳng bờ AB chứa đường tròn, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Trên nửa đường tròn, lấy điểm C bất kì. Vẽ tiếp tuyến (O) tại C cắt Ax, By lần lượt tại D và E.
b) AC cắt DO tại M, BC cắt OE tại N. Tứ giác CMON là hình gì? Vì sao?
Cho nửa đường tròn (O; R) đường kính AB cố định. Trên cùng một nửa mặt phẳng bờ AB chứa đường tròn, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Trên nửa đường tròn, lấy điểm C bất kì. Vẽ tiếp tuyến (O) tại C cắt Ax, By lần lượt tại D và E.
d) AN cắt CO tại điểm H. Điểm H di chuyển trên đường nào khi C di chuyển trên nửa đường tròn (O; R).
Hai đường thẳng y = ax + 2 và y = 4x + 5 song song với nhau khi :
Cho đoạn thẳng OI = 8 cm. Vẽ các đường tròn (O; 10cm); (I; 2cm). Hai đường tròn (O) và (I) có vị trí tương đối như thế nào với nhau?
Cho nửa đường tròn (O; R) đường kính AB cố định. Trên cùng một nửa mặt phẳng bờ AB chứa đường tròn, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Trên nửa đường tròn, lấy điểm C bất kì. Vẽ tiếp tuyến (O) tại C cắt Ax, By lần lượt tại D và E.
a) Chứng minh rằng AD + BE = DE
Cho hàm số y =(m – 3)x + 2 có đồ thị là (d)
b) Vẽ đồ thị với m tìm được ở câu a.
Cho biểu thức
c) Tìm m để có một giá trị x thỏa mãn :
P( - 2) + (m - 2x) - = m - 1