Cho hàm số có đồ thị (C). Mệnh đề nào dưới đây đúng?
A. (C) cắt trục hoành tại hai điểm.
B. (C)cắt trục hoành tại ba điểm.
C. (C)không cắt trục hoành.
D. (C)cắt trục hoành tại một điểm.
Đáp án D
Phương trình hoành độ giao điểm:
Vậy đồ thị hàm số cắt trục hoành tại 1 điểm.
Gọi M là giao điểm của đồ thị hàm số với trục Oy. Phương trình tiếp tuyến với đồ thị trên tại điểm M là:
Cho hàm số với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số nghịch biến trên các khoảng xác định. Tìm số phần tử của S.
Cho hàm số có đồ thị và đường thẳng . Tìm số các giá trị của m để d cắt tại 3 điểm phân biệt có hoành độ tại thỏa mãn
Hỏi có bao nhiêu giá trị m nguyên trong đoạn để hàm số đồng biến trên khoảng ?
Gọi M, N là các điểm cực tiểu của đồ thị hàm số . Độ dài đoạn thẳng MN bằng:
Thể tích của khối lăng trụ tứ giác đều là Diện tích toàn phần nhỏ nhất của hình lăng trụ là
Cho hàm số đồ thị là và . Gọi h là khoảng cách từ điểm A đến đường thẳng đi qua điểm cực đại, cực tiểu của . Giá trị lớn nhất của h bằng
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
Tìm tất cả các giá trị của để phương trình f(x)=m có 3 nghiệm phân biệt
Đường thẳng x=1 là tiệm cận đứng của đồ thị hàm số nào sao đây?
(I). (II). (III). (IV).