Cho đường tròn (C) có tâm nằm trên đường thẳng ∆: x + 2y – 5 = 0 và tiếp xúc với hai đường thẳng . Khi đó bán kính lớn nhất của đường tròn (C) có thể nhận là:
A.
B.
C.
D.
Do tâm nằm trên đường thẳng ∆: x + 2y – 5 = 0 nên tâm I(5 – 2y; y). Mà đường tròn tiếp xúc với hai đường thẳng nên có bán kính
Tương ứng ta có hai bán kính của (C) là
Đáp án là D.
Phương trình đường tròn đi qua ba điểm A(1; 2), B(-1; 1), C(2;3) là:
Cho đường tròn (C) có đường kính là AB với A(-2; 1), B(4; 1). Khi đó phương trình của (C) là:
Phương trình đường tròn có tâm I(3; -5) và có bán kính R = 2 là
Cho đường tròn (C) có phương trình . Khi đó đường tròn có tâm I và bán kính R với
Cho đường tròn (C) có phương trình . Khi đó đường tròn có tâm I và bán kính R với
Đường tròn có tâm nằm trên đường thẳng ∆: x + 2y – 6 = 0 và tiếp xúc với hai trục tọa độ. Khi đó bán kính của đường tròn là
Cho đường tròn (C) có phương trình . Một phương trình tiếp tuyến của đường tròn kẻ từ điểm M(-4; 2) là
Cho đường tròn (C) có phương trình và điểm nằm bên trong đường tròn. Đường thẳng ∆ qua M cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB. Phương trình của ∆ là:
Cho đường tròn (C) có phương trình và điểm M(-2; 1). Đường thẳng ∆ qua M(-2; 1) cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB. Phương trình của ∆ là:
Cho đường tròn (C) có phương trình . Để qua điểm A(m;2) có hai tiếp tuyến với (C) và hai tiếp tuyến đó vuông góc thì m nhận giá trị là:
Cho đường tròn (C): và đường thẳng ∆: x + y + m = 0. Giá trị m để đường thẳng tiếp xúc với đường tròn là:
Cho đường tròn (C) có phương trình . Để qua điểm A(m; 2 – m) có hai tiếp tuyến với (C) và hai tiếp tuyến đó tạo với nhau góc 60 thì m nhận giá trị là
Cho phương trình .Giá trị của m để phương trình trên là phương trình của một đường tròn có tâm nằm trên đường thẳng ∆: x + 2y + 5 = 0 là:
Cho đường tròn (C) có phương trình và điểm M(1; 2). Số tiếp tuyến của đường tròn đi qua M là