Cho hàm số có đồ thị như hình bên.
Khẳng định nào sau đây đúng?
A.
B.
C.
D.
Đáp án A
Phương pháp:
Quan sát đồ thị và nhận xét.
Cách giải:
Ta có hàm số:
Từ chiều biến thiên của đồ thị ta có a > 0.
Có:
Đồ thị hàm số có hai điểm cực trị
=> phương trình: có hai nghiệm phân biệt và . Chọn
Mà
Từ đồ thị ta có:
Vậy:
Cho a, b, c là ba số thực dương, khác 1 và . Biết và Khi đó, giá trị của bằng bao nhiêu?
Cho hàm số xác định, liên tục và có đạo hàm trên đoạn Xét các khẳng định sau:
1. Hàm số đồng biến trên thì
2. Giả sử suy ra hàm số nghịch biến trên
3. Giả sử phương trình có nghiệm là khi đó nếu hàm số đồng biến trên thì hàm số nghịch biến trên
4. Nếu , thì hàm số đồng biến trên
Số khẳng định đúng trong các khẳng định trên là
Cho tam giác ABC vuông tại A, AB=a, BC=2a. Tính thể tích khối nón nhận được khi quay tam giác ABC quanh trục BC.
Cho khối chóp S.ABC có thể tích là . Tam giác SAB có diện tích là . Tính khoảng cách d từ C đến mặt phẳng (SAB).
Cho phương trình:
(với m là tham số). Gọi là tập các giá trị của m để phương trình có nghiệm trên đoạn . Tính a+b.
Một người gửi số tiền 100 triệu đồng vào một ngân hàng với lãi suất 7,4%/năm. Biết rằng nếu không rút tiền ra khỏi ngan hàng thì cứ sau mỗi năm, số tiền sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Để lãnh được số tiền ít nhất 250 triệu thì người đó cần gửi trong khoảng thời gian bao nhiêu năm? (nếu trong khoảng thời gian này không rút tiền ra và lãi suất không thay đổi)