Giá trị nào dưới đây gần nhất với giá trị của m để có hai nghiệm thỏa mãn
A. 416
B. 415
C. 414
D. 418
Phương trình + 3x – m = 0 có a = 1 ≠ 0 và = 9 + 4m
Phương trình có hai nghiệm khi
Theo hệ thức Vi-ét ta có
Xét thế vào phương trình (1) ta được:
Từ đó phương trình (2) trở thành −19.22 = −m m = 418 (nhận)
Vậy m = 418 là giá trị cần tìm
Đáp án: D
Tìm các giá trị của m để phương trình (m – 1) + 3mx + 2m + 1 = 0 có hai nghiệm cùng dấu.
Gọi x1; x2 là nghiệm của phương trình . Không giải phương trình, tính giá trị của biểu thức
Biết rằng phương trình – (m + 5)x + 3m + 6 = 0 luôn có hai nghiệm với mọi m. Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.
Gọi là nghiệm của phương trình . Không giải phương trình, tính giá trị của biểu thức
Cho phương trình + mx + n – 3 = 0. Tìm m và n để hai nghiệm của phương trình thỏa mãn hệ
Cho phương trình – (2m – 3)x + – 3m = 0. Xác định m để phương trình có hai nghiệm thỏa mãn
Biết rằng phương trình m + (3m − 1)x + 2m − 1 = 0 (m 0) luôn có nghiệm với mọi m. Tìm theo m
Tìm các giá trị nguyên của m để phương trình − 6x + 2m + 1 = 0 có hai nghiệm dương phân biệt
Tìm các giá trị của m để phương trình – 2(m – 1)x – m + 2 = 0 có hai nghiệm trái dấu.
Tìm hai nghiệm của phương trình 5 + 21x − 26 = 0 sau đó phân tích đa thức B = 5 + 21x − 26 sau thành nhân tử.